论文部分内容阅读
在风力发电机组运行中轴承机械故障发生概率较高,而传统诊断依靠人工专家来进行故障特征识别,难以实现风电机组自动化故障检测和智能运维。基于振动信号检测、信号变换、卷积神经网络识别的轴承故障智能诊断思路,设计了具有三对卷积-池化层和两层全连接层的深度卷积神经网络模型和诊断算法。基于公开数据集对所提出方法进行了实验验证,并对基于振动信号经过振动灰度图、短时傅里叶变换时频图和连续小波变换时频图三种不同信号变换方式对诊断模型准确率的影响进行了比较和分析。实验结果证明所提出轴承机械故障智能诊断方法的有效性,为风电机组机