论文部分内容阅读
风电机组各传动设备之间耦合性强,故障发生的原因复杂、多样,使用单一的故障诊断方法受自身的局限性影响,诊断效果不太理想。针对这一问题,通过分析风力发电机组转速故障数据及其影响因素,以风力发电机转速超限故障为例,提出一种基于故障树和概率神经网络的风电机组发电机转速超限故障智能诊断方法。首先,给出多层故障树构建方法,使用故障树分析法得到故障模式。然后,根据故障树节点关系规则和故障模式,提取风力发电机运行数据的特征值,建立概率神经网络的故障诊断模型,根据实际运行故障样本训练网络,将训练后的网络用于故障诊断。现场实验表明,基于故障树和概率神经网络算法对于风力发电机转速故障诊断准确率显著。