基于筛选机制的L1核学习机分布式训练方法

来源 :山东大学学报(理学版) | 被引量 : 0次 | 上传用户:psoftw
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为降低无线传感器网络中核学习机训练时的数据通信代价和节点计算代价,研究了基于筛选机制的L1正则化核学习机分布式训练方法。提出了一种节点局部训练样本筛选机制,各节点利用筛选出的训练样本,在节点模型对本地训练样本的预测值与邻居节点间局部最优模型对本地训练样本预测值相一致的约束下,利用增广拉格朗日乘子法求解L1正则化核学习机分布式优化问题,利用交替方向乘子法求解节点本地的L1正则化核学习机的稀疏模型;仅依靠相邻节点间传输稀疏模型的协作方式,进一步优化节点局部模型,直至各节点模型收敛。基于此方法,提出了基于筛选机制的L1正则化核最小平方误差学习机的分布式训练算法。仿真实验验证了该算法在模型预测正确率、模型稀疏率、数据传输量和参与模型训练样本量上的有效性和优势。 In order to reduce the data communication cost and node calculation cost of nuclear learning machine training in wireless sensor networks, a distributed training method of L1 regularized kernel learning machine based on screening mechanism is studied. This paper proposes a screening mechanism of local training samples for nodes. Using the selected training samples, each node is constrained by the prediction of local training samples by the node model and the prediction of local training samples by the local optimal model of neighboring nodes. The augmented Lagrange multiplier method is used to solve the distributed optimization problem of L1 regularized nuclear learning machine. The alternating direction multiplier method is used to solve the sparse model of L1 regularized nuclear learning machine local to the node. Relying on sparse transmission between adjacent nodes, Model collaboration mode, and further optimize the local node model until each node model convergence. Based on this method, a distributed training algorithm for L1 regularized kernel least square error learning machine based on screening mechanism is proposed. Simulation results show the effectiveness and advantage of the proposed algorithm in predicting the correctness of the model, the sparseness of the model, the amount of data transferred and the training samples involved in the model.
其他文献
期刊
期刊
期刊
期刊
期刊
日语中的“音乐”一词源于中国。包括音乐在内的中日两国文化具有一定的共通性。通过遣唐使制度,日本把唐朝先进的文化带回日本,促成了文学、音乐、绘画、建筑、医学等领域的并
期刊
立足于21世纪,面对全球经济一体化的当代信息社会的变化,伴随传媒艺术信息网络技术的迅速发展与广泛应用,在教育已得到快速发展的今天,公民大众已不能仅仅满足于学校中学习,对校外
期刊
为了研究桩帽垫层对锤击沉桩效果的影响,采用有限元软件ABAQUS对弹性桩帽垫层和硬木垫层进行了模拟,发现弹性垫层在锤击过程中可显著降低桩身应力,而硬木板降低桩身应力的能