论文部分内容阅读
针对现有的红外与可见光图像融合算法存在融合图像的对比度与清晰度降低和细节纹理信息丢失等问题,提出将鲁棒主成分分析(RPCA)、压缩感知(CS)和非下采样轮廓波变换(NSCT)相结合的融合算法。首先对两幅源图像分别进行预增强处理,应用RPCA分解得到相应的稀疏分量和低秩分量;然后对稀疏矩阵利用结构随机矩阵压缩采样,利用高斯梯度-信息反差对比度(GG-DCI)压缩融合,经正交匹配追踪法(OMP)重构;接着对低秩矩阵采用NSCT分解成低频子带和高频子带,低频子带选用区域能量-直觉模糊集(RE-IFS)融合