论文部分内容阅读
目的评价BPNN神经网络模型和季节性差分自回归滑动平均模型(seasonal autoregressive integrated moving average,SARIMA)在乙类传染病发病数中的预测效果。方法利用荆州市2005年1月—2017年12月的乙类传染病逐月发病数作为拟合数据,建立BPNN神经网络模型和SARIMA模型,预测2018年1—5月逐月发病数并与实际值比较,采用平均绝对百分比误差(MAPE)、R^(2)、均方误差(RMSE)和平均绝对误差(MAE)评价模型的拟合及预测效果。结果SARI