极限学习机延拓的BS-EMD端点效应抑制算法及应用

来源 :计算机工程与应用 | 被引量 : 0次 | 上传用户:a4951660
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对希尔伯特-黄变换过程中经验模态分解出现的端点效应问题,采用极限学习机(ExtremeLearningMachine,ELM)算法对原始数据序列分别向左右两端延拓,对扩展后的数据序列用B样条插值函数求其平均曲线,在此基础上进行下一步分解,结束分解后摒弃两端延展的数据,使算法得到优化,起到了抑制端点效应的作用。通过与未经延拓,BP神经网络延拓和支持向量机延拓各项指标的对比分析表明,该算法不仅有效抑制了经验模态分解过程中的端点效应,在预测速度和分解精度上都有一定的优势。将该方法应用于电力系统的谐波分析中,仿
其他文献
根据贵州资源的特点和化工企业的发展,介绍我校实施专业改造和优化课程体系的办法。
针对传统大动态范围图像数据压缩方法易受场景变化影响,量化后的8位显示图像整体模糊、图像细节和弱小目标丢失问题,提出了一种基于直方图重建图像细节增强算法。对图像直方图统计值进行重新赋值,保留图像中出现的细节部分,并缩小相邻灰度级间间隔;采用二维Gabor滤波器来模拟视觉感知系统,将Gabor滤波器与图像进行卷积运算,得到滤波后的平滑图像;采用局部对比度增强方法来增强图像细节部分,并将增强后的中间结果