论文部分内容阅读
The pier, placed at the outlet of the pressure flow section, is an effective design to deal with the problems of the manufacture and operation of the gates for a discharge tunnel with high water head. It is crucial to control the water-wing, induced by this type of the pier. Through observing the phenomena of the water-wing, the reason of the water-wing inception, i.e., the concave of the flow surface, was presented, and a type of the new pier with bottom underlay was designed. The hydraulic characteristics of the pier, including the variations of the water-wing features, both length and height, with the water head, as well as with the concave depth, and with the height of the bottom underlay, and the variations of the concave depth with the height of the bottom underlay, were investigated by physical model experiments. The results show that the approach of the modification of the concave through the structures with the bottom underlay-type pier is remarkably effective in the water-wing control.
The pier, placed at the outlet of the pressure flow section, is an effective design to deal with the problems of the manufacture and operation of the gates for a discharge tunnel with high water head. It is crucial to control the water-wing, induced by this type of the pier. Through observing the phenomena of the water-wing, the reason of the water-wing inception, ie, the concave of the flow surface, was presented, and a type of the new pier with the bottom underlay was designed . The hydraulic characteristics of the pier, including the variations of the water-wing features, both length and height, with the water head, as well as with the concave depth, and with the height of the bottom underlay, and the variations of the concave depth with the height of the bottom underlay, were investigated by the physical model experiments. The results show that the approach of the modification of the concave through the structures with the bottom underlay-type pier is remarkably effective in the water-win g control.