论文部分内容阅读
双目视觉技术能够实现目标的识别与距离计算,在自动驾驶领域有很大的应用空间。然而,现阶段双目视觉存在光照干扰、遮挡、弱纹理区域歧义匹配等问题,影响其测量的准确性和可靠性。提出基于双目视觉的跟驰状态实时感知系统,该系统采用基于车辆跟驰模型的扩展卡尔曼滤波方法对车辆跟驰状态进行实时估计,包括跟驰距离、前后车速度差等。通过实际道路试验,证明了该系统能够识别并修正测量数据中的异常值,解决弱纹理区域误匹配问题。试验结果表明:25 mm焦距与12 mm焦距的双目系统跟驰间距测量值的平均误差分别为2.66%与9.1