基于氢储能的光伏发电系统

来源 :电源技术 | 被引量 : 0次 | 上传用户:nogoodvip
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
光伏发电不连续、随机性强,容易对发电系统稳定运行产生不利影响.在光伏发电系统中应用氢储能技术,将光伏电站电能以氢气形式存储起来,在必要时通过燃料电池发电系统释放能量,提高光伏发电的整体利用效率.通过建立各系统的仿真模型,分析总结了各个环节的输出特性.实际案例数据表明氢储能的加入能够提高光伏系统的能量利用效率.
其他文献
面向解决矢量无人机飞行姿态中由于控制策略不合理导致飞行失稳甚至“炸机”的频发问题,介绍了近年来各种矢量无人机种类及其飞行控制策略设计,重点阐述了易发生的飞行掉高、执行器故障、传感器故障、机翼振动和随机干扰等飞行姿态稳定问题以及注意事项,并总结出实践中相匹配的优良解决方案,最后提出了矢量飞行设计的建议。本研究有助于解决矢量无人机设计与开发中出现的飞行稳定性问题及其控制方案匹配的优化问题。
利用伪随机二进制信号为电池系统的激励信号,测得相应的输出端电压.在考虑温度和老化等因素对电池阻抗频域特性影响,注入不同幅度的电流信号,实现电池阻抗实时快速测量.在搭建的实验测试平台上进行验证,结果表明,相比传统电化学阻抗谱测量技术,采用伪随机二进制序列信号进行阻抗测量方法快速简单.它能够有效实时地对非线性电池系统进行辨识,较为准确地测量在不同环境下电池阻抗动态变化.
锂氟化碳电池是一种高比能量锂一次电池.它具有安全性高、放电电压平稳、自放电率低、对环境友好等特点,广泛应用于医疗、武器、航空航天、船舶等领域,可作为重要的储能元件.锂氟化碳电池优异的比能量特性使其受到了学术界和工业界的青睐.近些年来,对于锂氟化碳电池的研究成果层出不穷.通过梳理近五年来锂氟化碳电池相关技术研究成果,详细阐述锂氟化碳电池的工作原理和基本性能,并对当前锂氟化碳电池正极材料改性技术进行总结,分析了不同技术路线特点及先进性和实用性,结合实际应用场景和背景阐述了锂氟化碳电池未来发展趋势和应用前景.
针对锂离子电池温度估算问题,提出一种基于电化学机理的电池温度估计方法.以容量为3.2 Ah的18650三元锂离子电池为研究对象,在考虑电池老化对电池温度影响的基础上,根据18650电池结构和电池传热规律,计算电池在使用过程中的内部产热速率,并采用有限差分法估算电池表面温度,最后通过MATLAB/SIMULINK搭建锂离子电池电化学-热耦合模型.仿真结果表明仿真温度与实验测得的温度变化趋势基本一致,为动力电池的热管理系统提供了一定的参考依据.
为了解决电动汽车冬季续航里程严重缩水的问题,进行了一系列保温优化设计.针对某款动力电池包,首先分析了其在低温下的“痛点”和散热路径,在不降低模型精度基础上,进行了内部保温和外部保温仿真设计和分析.以优化的内外保温相结合的方案为蓝本,进行了保温性能仿真验证.结果表明,保温工况下电池包的低温“痛点”主要集中在靠近端板的位置.在该部位采取加强隔热的措施,就能提升电池包最低温度,减小温差.
基于不同有序度的GalnP材料制备出高/低带隙的发射区/基区结构被称之为同材料类异质结结构,其产生的特殊能带结构可以提高太阳电池效率.通过生长条件的优化,验证了GaInP材料的有序度变小,材料带隙从优化前1.868 eV提高到1.898 eV.采用该工艺条件制造了具有对应有序度的GalnP材料,分别作为GaInP/GaInAs/Ge三结太阳电池顶子电池的发射区/基区.测试结果表明,与参照电池比较,新结构太阳电池光照电流电压(LIV)特性参数在电流密度方面获得了明显的提高.
基于耦合电感、开关管与输入电压源组成的基本功率单元,提出了一种适用于光伏发电系统的新型高增益DC/DC变换器.变换器中耦合电感和二极管-电容结构组成的倍压单元提升了电路的升压比,无源箝位电路对漏感能量进行了二次利用,削弱了开关管漏、源极间的电压震荡,且箝位电容的位置进一步提升了输出电压.另外,漏感的存在缓解了二极管的反向恢复问题,优化了开关管和二极管的选择.详细解释了变换器在不同模式的工作原理,并计算出了电压增益及各元件的电压、电流应力.设计了额定功率为500 W的实验样机来评估所提变换器的可行性与优越性
由于电网中可再生能源发电的间歇性和易变性、用户侧负荷的不确定性以及能量的双向性,需要一种合理的微电网协同控制方案来实现多BESS微电网的可靠运行.鉴于模块化多电平复合变换器(modular multi-level hybrid converter,MMHC)电池储能系统(battery energy storage systems,BESS)的效率高、成本低等优点,根据MMHC-BESS的拓扑结构对其进行了建模和SOC估计,并在此基础上提出了一种MAS控制微电网MMHC-BESS PQ控制的SOC协同控制
动力电池散热性能对电动汽车正常运行至关重要.为强化相变材料导热能力,改善动力电池散热效果,以动力电池最高温度和温差作为评价指标,用计算流体力学(CFD)方法研究在相变材料(PCM)中加入不同结构形状和数量的导热翅片对动力电池散热性能的影响.结果表明,添加弧形结构翅片比不添加时电池最高温度和温差降幅分别为7.99和0.67 K;在可用空间内,增加翅片数量,电池最高温度和温差的下降幅度不按比例增大.当加入4个翅片时,电池最高温度和温差下降幅度最大.
质子交换膜燃料电池是一种多耦合非线性的复杂系统,电堆内部的水淹和膜干故障是其运行过程中最常见的故障.基于差分进化算法优化的支持向量机方法,可以用于燃料电池故障诊断,该方法在传统的支持向量机模型上增加了主成分提取和差分进化算法寻找最优参数,使模型得到更好的训练效果.采用电堆20片单电池电压为数据集进行相关的故障验证分析,结果表明:通过差分进化算法优化的支持向量机在燃料电池故障诊断中有着较高的准确度,具有一定的工程应用价值.