论文部分内容阅读
维吾尔文常用切分方法会产生大量的语义抽象甚至多义的词特征,因此学习算法难以发现高维数据中隐藏的结构.提出一种无监督切分方法dme-TS和一种无监督特征选择方法UMRMR-UFS. dme-TS从大规模生语料中自动获取单词Bi-gram及上下文语境信息,并将相邻单词间的t-测试差、互信息及双词上下文邻接对熵的线性融合作为一个组合统计量( dme)来评价单词间的结合能力,从而将文本切分成语义具体的独立语言单位的特征集合. UMRMR-UFS用一种综合考虑最大相关度和最小冗余的无监督特征选择标准( UMRMR)来评价每一个特征的重要性,并将最重要的特征依次移入到特征子集中.实验结果表明dme-TS能有效控制原始特征集的规模,提高特征项本身的质量,用UMRMR-UFS的输出来表征文本时,学习算法也表现出其最高的性能.