论文部分内容阅读
This paper investigates the heat transfer characteristics of a thermoelectric generator. The influence of heat dissipation intensity to the sub-thermal resistances distribution is experimentally studied. Based on the thermal network analysis and finite time thermodynamics, an analytical model including all thermal resistances (in both thermocouples and external heat exchangers) is developed to predict the performance of the generator. The results show that the computed values of output power agree well with the experimental values. The heat transfer enhancement on the generator cold side greatly reduces the cold side temperature and thermal resistance, and obviously improves the output power. Compare with air natural convection cooling, the main thermal resistance changes from the resistance between the fins and the ambient to the thermal contact resistances between the generator and the heat sink at the conditions of forced convection and water cooling. This study may be guide the optimization of generator structure.
The paper investigates the heat transfer characteristics of a thermoelectric generator. The influence of heat dissipation intensity to the sub-thermal resistances distribution is experimentally studied. thermocouples and external heat exchangers) is developed to predict the performance of the generator. The results show that the computed values of output power agree well with the experimental values. The heat transfer enhancement on the generator cold side greatly reduces the cold side temperature and thermal resistance, and obviously improves the output power. Compare with air natural convection cooling, the main thermal resistance changes from the resistance between the fins and the ambient to the thermal contact resistances between the generator and the heat sink at the conditions of forced convection and water cooling. This study may be guide the opt imization of generator structure.