论文部分内容阅读
针对目前现有的TLD(跟踪-学习-检测)算法易受阴影、遮蔽、摄像机晃动或是目标快速运动的影响,提出基于HSV-HOG的改进TLD目标跟踪方法。首先,在跟踪初始化前通过加入HSV颜色空间提高TLD算法初始化速度以及抗噪性,使得TLD算法在阴影、抖动的干扰下依然能够实现较好的目标跟踪。若TLD算法选取的跟踪目标受到遮蔽、运动过快,则在算法中加入自适应kalman滤波预测目标物体可能存在的区域,缩小跟踪器的跟踪范围,提高跟踪速度,并在检测器加入后验HOG特性,对已缩小的预测区域进行检测,增强了检测器的判别