我们是太阳系中唯一的生命?

来源 :飞碟探索 | 被引量 : 0次 | 上传用户:geyukcl
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  在不断搜寻地外生命的时候,太阳系内的近邻是否能给我们提供新的答案呢?
  就在几十年前,认为太阳系中的一些卫星或行星曾经拥有过甚至现在仍拥有生命无疑会遭到严重质疑。现在,得益于不同的无人探测器,我们的认识已大为不同——单单在太阳系中就存在数个潜在的宜居天体。但最大的问题依旧是,这些天体中是否真的有一个目前仍存在生命?我们正在越来越接近这一问题的答案,而这个答案将重新定义我们在宇宙中的地位。
  从本质上讲,寻找太阳系中的生命可以分为3个波次。第一波包括环绕木星的“伽利略”探测器和环绕土星的“卡西尼”探测器,它们的探测结果证明存在可能宜居的其他天体,其中最突出的是木卫二、土卫二和土卫六,以及其他一些曾经和火星一样宜居的天体。


美国航空航天局“木卫二多次飞掠”任务的艺术概念图

  探索的下一个波次是我们目前正在进行的,包括计划于2018年发射的“火星生命”漫游车和“木卫二多次飞掠”任务(EM-FM)。它们的目的是探测这些天体是否真的宜居,评估在那里能发现些什么。未来几十年将迎来最关键的第三波,回答“在太阳系中是否真的存在地外生命”这个问题。在此之前,还有一个必须要解决的关键问题。我们知道,在地球上,只要条件适宜,总会有单细胞或多细胞生物存在。从南极洲冰冻的荒原到最深的海洋底部,生命几乎无处不在。因此,如果我们发现其他天体有着和地球类似的环境,那么它们也极有可能拥有生命。唯一的问题是,我们并不确切地知道要找的是什么。
  寻找生命的证据其实非常困难。科学家并不期望能找到一棵树或者一条鱼,潜在生命的迹象更加微小得多。


欧空局“火星生命”漫游车的艺术概念图

  也就是说,根据目前的探测结果,太阳系的任何其他天体上可能存在的生命都是微生物。我们不可能在木卫二的海洋中找到一条悠游的鱼,也不会在火星表面看到一只乱窜的老鼠。其原因是,虽然这些天体都拥有生命的要素——水、食物源和能量源,却没有一个能承载在地球上看到的宏观生物。如果在太阳系中还有其他生命,都将是微生物。此外,我们也没有神奇的探测仪器,只要一看采集自某个天体的样本,就能告诉我们那里是不是存在微生物。那么,该如何去证明另一个天体上存在生命呢?我们不知道。现在还没有一击必中的方法。
  但是,没必要悲观和沮丧。虽然现在还没有“生命探测仪”,但我们基本上知道生命应该或者可能会是什么样子。对未来的探测任务来说,有一些可以遵循的道路。生命会制造出一系列特定的有机化合物。例如,在其中的每一种分子中都包含大量的碳原子,右旋分子和左旋分子之比也会具有特定的数值,被称为手性。生命也倾向于使用较轻的碳和其他原子来构建其分子,因为移动这些较轻的同位素物质所需的能量也会较少。与之形成对比的是,在陨石或石油的有机物质
  里,包含的碳原子数、同位素组成和手性分布更加均匀。
  寻找这些生命迹象将是一件更为复杂的事情。考虑到这一点,未来几年发射的第三波无人探测器将会致力搜寻这些生命迹象,为我们指明正确的方向。
  在这些即将成行的任务中,最令人兴奋的是由欧洲主导的“火星生命”漫游车,它预计在2018年使用俄罗斯的火箭发射升空。它携带的仪器将会寻找过去以及现在火星生命的迹象,并将首次对火星表面进行钻探。由此,它可以对火星表面之下2米处的物质样本进行分析,在这个深度上预期会有液态水的存在。如我们所知,水是所有已知生命形式必需的关键要素。
  “火星生命”将要探测的是火星极早期——44亿至38亿年前——可能存在的生命留下的分子信号。因此,它的钻探机必须打穿被宇宙辐射破坏的土层,采集地下深处保存完好的样本。在火星表面向下钻2米并非易事,因为之前的努力达到的最大深度只有10厘米。在开钻之前,还需要确定一个地点,在那里必须曾经有流动的水存在过很长一段时间。幸运的是,这一地点已经选定,即位于克里斯平原地区的奥克西亚平原。“火星生命”上还配备了用于矿物和有机物探测的新一代仪器。它将是一个惊艳的探测任务,会创下许多“第一”。
  虽然有许多“第一”,但并非样样都是。在此之前,对火星生命的搜寻从20世纪70年代的两个“海盗”号着陆器就已经开始了。它们都进行了生物学实验来搜索生命迹象,但受限于仪器精度,得到的结果有点模棱两可。不过,这已是当时最好的结果。现在,我们对地球上的生命以及天体生物学的认识已经有了很大的进步。这使得类似“火星生命”这样的任务能够开展更为先进的生命搜寻。“火星生命”上携带了一台特别有意思的仪器,就是拉曼激光分光仪。它将在地球之外进行拉曼分光研究。这项研究可以提供有关分子振动的信息,进而识别出给定样本或地点中的分子,为搜寻生命提供潜在的线索。
  在地球上,拉曼分光已被证明是一项非常灵敏且用途广泛的技术,可以用于探测爆炸物和鉴定艺术品。它还能够探测到智利阿塔卡马沙漠中生命力极强的微生物,而当地的环境与火星环境很相似。
  虽然还赶不上前面提到的“生命探测仪”,但它已经很接近了。如果“火星生命”能在火星上发现类似地球上的生物分子,那就暗示火星现在或者过去是宜居的。这意味着火星上目前存在生命,或者在火星的岩石中埋藏着微生物的化石。
  事实上,早在20世纪90年代,火星就在全球媒体上引起了轩然大波。1996年,科学家宣布在一块名为“艾伦山84001”的陨石中发现了微生物化石。在这一强烈猜测的驱动下,时任美国总统克林顿就发现地外生命的前景发表了电视讲话。“在历经了数十亿年时间和数亿千米距离之后,这块陨石告诉我们地外生命存在的可能性。”克林顿说,“如果这一发现被证实,它无疑会成为科学史上最令人惊叹的发现之一。它的影响将是深远而令人敬畏的。”   然而,随后反对之声不绝于耳。到世纪之交的时候,这一假设已被认为是极其不可能的。这也凸显了要证明或者证否地外生命的存在是多么困难,同时彰显了全世界对最终解答这个终极问题的强烈愿望。
  当你声称探测到生命迹象时,有谁会相信你?回答是,没多少。我们可以真切地渴望发现曾经存在的生命,但确认它很可能需要把样本送回地球来进行分析。
  不过,这不仅仅是“火星生命”关心的事情。如前所述,在太阳系中至少还有两个天体——木星的卫星木卫二和土星的卫星土卫二——被认为在表面的冰层之下拥有巨大的海洋。最近,美国航空航天局的“卡西尼”探测器穿过了从土卫二地下海洋中喷射出来的物质,以便对其成分进行分析,分析的结果目前还未公布。不过,在未来的10年中,科学家将发射新的任务来详尽地研究这些天体的宜居性,其中最引人关注的是“木卫二多次飞掠”任务,计划发射的时间是21世纪
  20年代,届时,它会和“卡西尼”一样最终有一个更为正式的名称。这次任务会对木卫二实施45次飞掠,对这颗卫星及其表面展开详细的研究。它也有可能携带一个着陆器,后者会降落到木卫二的表面。虽然它不太可能对木卫二的地下海洋进行直接采样,但它仍是有史以来第一次亲临另一个类似地球的宜居天体进行探测。不过在此之前,我们还有一个大问题没有解决:行星保护规则。如果像木卫二和火星这样的天体确实非常有利于生命生存,那么由航天器意外携带去的地球生命形式就有可能在那里茁壮成长,这可能意味着未来在那里探测到的生命并非是地外的,只不过是地球生命的后裔。
  科学家可不希望花20年时间好不容易把探测器送达了土卫二或木卫二的地下海洋,结果却发现了来自地球的生命。根据空间研究委员会(COSPAR)制定的指导方针,任何可能承载生命的地方,例如火星上可能有液态水的地区,都被认为是“特殊区域”,只有满足了极端严苛的消毒程序之后才能往那里发射着陆器。由于人类自身携带了大量微生物和细菌,除非规则被改变,否则这些区域也禁止人类进入。这些规则显然有充分的理由和目的。在搜寻地外生命活动不断升温的
  今天,有必要强调探测活动必须小心谨慎,以免对有着潜在重大科学价值的地方造成污染。
  不过,在所有的问题中最根本的也许莫过于为什么。为什么在太阳系中寻找生命这么重要?如果在木卫二冰冻的表面下发现了微生物,这究竟意味着什么?
  在太阳系中若有另一个天体能独立地形成生命,其意义无疑是巨大的。如果在地球之外存在着适宜生命的环境却没有形成生命,这表明我们在宇宙中也许是弥足珍贵的。但是,如果在太阳系中就有两处能独立地形成生命,那么考虑到宇宙中有远超数万亿的行星系统,生命将无处不在。
  地球之外是否存在生命目前仍然是人类历史上的重大科学问题之一。但是,我们现在比以往任何时候都更接近找到它的答案。
其他文献
澳大利亚莫纳什大学领导的研究小组发现,球状星团M4中有一大群恒星过早死亡,这挑战了我们公认的恒星演化观。研究人员用一种被称为高效率和高分辨率多元素摄谱仪的新仪器,解读球状星团M4中恒星的化学成分。他们发现,大约有一半的恒星倾向于跳过红巨星阶段,提前数百万年进入白矮星演化阶段。  之前的化学元素分析显示,过早死亡往往只发生在富钠或贫氧的恒星中。科学界关于这些恒星的最佳模型没有预测到它们会如此夭折。之
期刊
已知行星的数量正在随着时间不断增加,然而还要多久我们才能找到生活在它们之上的生命?  2015年,一个天文学家团队利用已有250年历史的提丢斯—波得定则,预言了宜居行星的数目。结果显示,有数十亿颗恒星在其宜居带内拥有1颗至3颗行星。尽管这个定则可以通过简单的计算预测恒星周围的行星的轨道,但它并非特别准确,即便在太阳系中也是如此。  然而,很多科学家相信,宇宙中存在大量与地球类似的行星,其中有许多就
期刊
宇宙诞生的过程可能并非我们原先设想的那样激烈。根据一项最新研究,宇宙在诞生过程中可能经历过反复的膨胀和收缩,从一种状态切换为另一种状态,却始终没有发生彻底塌缩。  这一最新的理论被称为“大反弹”理论。该理论其实已经经历了很长时间的讨论,但最近科学家建立了一种模型,能够证明这一理论具备现实可能性,允许一个新的宇宙从先前的收缩状态过渡为膨胀状态并不断成长。  研究人员指出,早期宇宙中的所有粒子都应当是
期刊
近日,天文学家在海王星外的柯伊伯带里,新发现了一颗轨道超长的矮行星。它的出现将帮助揭示行星形成早期的情况,并促进人们了解太阳系“年轻”时的状况。  此次研究是“外太阳系起源调查(OSSOS)”项目的一部分。包括不列颠哥伦比亚大学研究人员在内的国际天文学家团队,利用“加拿大—法国—夏威夷天文望远镜”的数据和强大的计算机图像搜索发现了这颗矮行星,国际天文协会的小行星中心将其命名为RR245。据目前对R
期刊
1952年,一群科学家想聚在一起严肃地探讨飞碟也许是星际间的宇宙飞船这一观点的可能性。实际上,在1951年夏天重新整顿“怨恨”计划时,就提到要聚在一起讨论,因为章程中说过,我们将是唯一可能发现真相的科学家。一些人先前参与过飞碟项目,他们先是宣称飞碟为宇宙飞船,之后,突然改变立场,认为整个飞碟事件就是一个莫大的笑话。这两种说法使美国空军陷入困境。我不知道他们为什么要这么做,一开始我们就意识到,在美国
期刊
为什么我们能够经历生命中几乎每一个时刻?这是现代物理学中一个最大的未解之谜。物理学家利用公式来描述这个世界,这些公式告诉我们事物如何随着时间的流逝而变化,但并未解释时间是什么。我们可以将事物如何因位置不同而改变的过程用公式表现出来,或者把意大利炖饭的口味如何随着“黄油量的增减”而变化的过程用公式记录下来,时间却无法用公式表现。时间似乎在流动,但黄油的量或空间位置不流动。这种差异从何而来?  对于这
期刊
水星的轨道距太阳很近,因此只有在日落后或日出前的短暂时间,我们才能在地球上看到水星。这幅作品是作者连续10天在太阳位于地平面下方10°时拍摄的水星轨迹,和一幅壮美的日落影像叠加而成。2火星的暗色沙丘  这些沙峰平均间隔约3米,它们的形成与稀薄火星风携带黝黑沙粒的方式有关。影像中,位于远处的正常火星沙原在淡橘色的光照下向上倾斜,在远右方则可见到满布石块的原野。2016年7月,“好奇”号对这片曾经是湖
期刊
科学家发现了一种异乎寻常的物质形态,在这种物质形态中,其他状态下不可分离的电子似乎分离了。  班纳吉是田纳西州橡树岭国家实验室的科学家, 他说:“科学家曾经预测到这种新型物质形态,但在此之前还没有在现实生活中发现过。一种奇特物质中的电子开启‘量子舞蹈’模式后,就会形成这种物质形态,其中的电子自旋以特殊的方式相互作用。”同时他还说:“这些发现开拓了生产更好的量子计算机之路。”  在日常生活中,大多数
期刊
在被发现时,它看起来就像是一段普通的手指骨骼。但当研究人员在2010年对它进行DNA排序时,发现了一个之前并不为人所知的古老人种:丹尼索瓦人。更让人吃惊的是,研究者发现,一些现代人类也携带有丹尼索瓦人的基因。这意味着在古代的某个时期,丹尼索瓦人曾与现代人种交配并育有后代。  由于缺乏化石证据,研究丹尼索瓦人的最佳方式就是研究他们遗留在现代人身上的基因。因此,洛杉矶加利福尼亚大学的族群遗传学家斯里兰
期刊
4年前,在我出版《生命的棘轮》一书时,我关注的重点是,在周围的分子一片混乱的情况下,生命是如何创造并维持那些高度有序的系统的——也就是分子是如何被安装上“棘轮”、“从混乱中提取秩序”的。令我感到惊讶的是,这本书在衰老研究领域引起了极大的反响。美国国家衰老研究所心血管科学实验室的主要负责人埃德·拉科塔说,衰老是从“秩序中提取混乱”。  最近,我应邀为“鹦鹉螺”网站专门撰写了文章,谈到了这些观点,也收
期刊