论文部分内容阅读
传统的人脸识别技术对人脸图像特征的提取及分类器选择均较为复杂,且识别率也不高,随着卷积神经网络从手写数字识别到人脸识别的技术不断成熟,提出了一种利用Python+Keras框架测试CNN的人脸识别算法。该方法主要涉及两方面,一是通过改变隐藏层神经元数量查看对网络的影响;另一个是通过改变卷积层1和卷积层2特征图数量查看对网络的影响。通过多组实验测试得到最佳的CNN模型为36-76-1024,该模型可以自动提取人脸图像特征并分类,使用adam优化器和softmax分类器进行人脸识别可以让训练更快收敛和更