论文部分内容阅读
In the present work,a chemically modified electrode has been fabricated utilizing Bi2O3/ZnO nano-composite.The nanocomposite was synthesized by simple sonochemical method and characterized for its structural and morphological properties by using XRD,FESEM,EDAX,HRTEM and XPS techniques.The results clearly indicated co-existence of Bi2O3 and ZnO in the nanocomposite with chemical interaction between them.Bi2O3/ZnO nanocomposite based glassy carbon electrode(GCE)was utilized for sensitive voltammetric detection of an anti-biotic drug(balofloxacin).The modification amplified the electroactive surface area of the sensor,thus providing more sites for oxidation of analyte.Cyclic and square wave voltammograms revealed that Bi2O3/ZnO modified electrode provides excellent electrocatalytic action towards balofloxacin oxidation.The current exhibited a wide linear response in concentration range of 150-1000 nM and detection limit of 40.5 nM was attained.The modified electrode offered advantages in terms of simplicity of preparation,fair stability(RSD 1.45%),appreciable reproducibility(RSD 2.03%)and selectivity.The proposed sensor was applied for determining balofloxacin in commercial pharmaceutical formulations and blood serum samples with the mean recoveries of 99.09%and 99.5%,respectively.