求解二次规划逆问题的非单调信赖域算法

来源 :计算机应用研究 | 被引量 : 1次 | 上传用户:fairylky
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了提高求解二次规划逆问题的速度,提出了针对求解该问题的非单调信赖域算法。为了降低问题的复杂度,将二次规划逆问题转换为决策变量相对较少的对偶问题,采用增广Lagrange法构造对偶问题的子问题,并通过引入光滑函数将子问题转换为无约束优化问题,利用非单调信赖域算法进行求解。数值实验结果表明,该算法的迭代次数比牛顿算法、Gauss回代交替方向法少,运行速度快。因此,对于大规模二次规划逆问题,该算法更加有效。
其他文献
针对小基高比立体匹配当中的亚像素级视差精度和匹配效率较低问题,提出一种基于变分原理的亚像素级立体匹配方法。该方法以规范互相关函数作为能量函数的数据项,并将图像驱动的平滑项和视差驱动的平滑项相结合作为能量函数的平滑项,然后通过变分原理获得能量函数的欧拉方程,最后通过连续过松弛法进行迭代求解获得亚像素级视差。实验结果表明,提出的亚像素级匹配方法不但可以获得较高精度的亚像素级视差,得到更为精确的高程信息
针对传统粒子群算法易早熟、精度低、后期收敛速度慢等问题,结合反向学习理论,提出了一种基于交叉因子的双向寻优粒子群优化算法(CBMPSO)。该算法使初始种群在搜索区域均匀分布,计算粒子及其反向粒子的适应值,取最优作为初始种群;迭代过程增加对全局最差粒子的跟踪,随机开启基于交叉因子的双向学习机制。对几种典型函数的测试结果表明,CBMPSO算法的寻优能力及收敛速度有了显著提高,并且能够有效避免早熟收敛问
针对刑侦图像数量大、质量差、管理难的特点,采用了一种基于模糊分类理论对刑侦视频图像的场景进行分类的方法。首先对监控视频图像的场景进行人工多标记分类,然后对刑侦视频图像提取两种纹理特征(局部二值模式和小波纹理)并进行融合,最后采用模糊K-最近邻(K-nearest neighbor,KNN)分类器实现刑侦图像四种场景(车辆、行人、建筑和街道)的分类并得到监控视频数据库中图像的模糊不确定性。实验结果表
考虑设备应急抢修的时限要求和整个应急抢修系统的服务质量要求,采用0-1整数规划模型描述了应急抢修点选址问题,并针对该问题设计了一种混合遗传算法。在算法中使用启发式算法对种群中的不可行解进行修复,以保持种群在可行域内搜索,并采用近邻搜索算法改善种群中的最佳个体。算例计算的结果表明,该算法求得的结果要优于基于罚函数的遗传算法和采用简单修复算法的遗传算法。
模幂乘运算是实现公钥密码体制的一个很重要的运算,其运算速度从整体上决定了公钥密码体制的实现效率。通过采用预处理技术,将椭圆曲线的定点标量乘的固定基窗口方法应用在模幂运算中,与SMM算法进行组合得到一种新的求模幂乘算法——固定基窗口方法。对算法的原理与效率进行了分析,实验结果表明,算法的运算速度得到了有效提高。
运用进化算法求解柔性车间调度问题时,编码的特殊性对进化策略造成的局限制约了算法的搜索能力。为此,提出一种基于浮点型编码策略的差分多目标优化算法。该算法采用基于工序权重的浮点数编码—解码机制,消除了排列组合型编码方式对进化操作带来的约束,运用差分进化策略生成新个体,以提高优秀个体产生的几率,进而保证算法有更好的收敛性。将算法与传统算法及其改进形式在相同测试用例上进行对比,结果表明,本算法在保证收敛性
针对目前不确定XML小枝模式匹配算法均基于归并,易造成很大的空间和时间浪费问题,提出基于P-文档模型的连续不确定XML的非归并的小枝模式匹配算法。算法在节点入队列和出队列时分别进行过滤剪枝操作,减少待处理节点的个数,匹配过程使用相互关联的链表存储中间结果,不需要归并。理论分析与实验结果表明,该算法是一种高效的连续不确定XML查询算法。