论文部分内容阅读
针对不同样本之间存在交叉数据的模式识别问题,将多层激励函数的量子神经网络引入模式识别之中,提出一种基于量子神经网络的模式识别算法。量子神经网络是将神经元与模糊理论相结合的模糊神经系统,由于自身固有的模糊性,它能将决策的不确定性数据合理地分配到各模式中,从而减少模式识别的不确定度,提高模式识别的准确性。本文以英文字母为例,应用量子神经网络模型进行字符识别,通过比较发现量子神经网络除了可以克服BP网络的诸多缺点外,对具有不确定性、两类模式之间存在交叉数据的模式识别问题,有极好的分类效果。仿真结果证明该方