论文部分内容阅读
针对传统脉冲耦合神经网络(PCNN)模型中存在的待定参数过多且难以选择、循环迭代次数难以确定的缺陷,提出了一种基于最小Tsallis交叉熵改进型PCNN图像分割算法.根据改进的内部活动项和阈值衰减函数初始化模型参数,根据图像特性自适应设置链接强度系数和链接权值矩阵;利用最小Tsallis交叉熵准则确定PCNN循环迭代次数,采用双边带滤波器对分割图像进行滤波,获取最优图像分割结果.仿真实验结果表明,该算法提高了分割后图像的区域一致性、区域对比度、形状测度,缩短了运行时间,改进了图像分割效果.