论文部分内容阅读
大坝渗流监测分析是大坝安全监控的重要内容,预测分析的难点之一在于渗流监测数据往往具有复杂的非线性特点。本文充分利用支持向量机的结构风险最小化与粒子群算法快速全局优化的特点,采用粒子群算法快速优化支持向量机的模型参数,通过该模型对非线性监测数据进行拟合,建立了基于PSO-SVM的大坝渗流监测的时间序列非线性预报模型。本模型应用于隔河岩水电站的坝基渗流量的预测,计算结果与实际监测值吻合良好。