论文部分内容阅读
经典的证据理论不包括从实例中学习基本信度分配的机制,因此应用范围受到一定限制。通过在证据理论中引入神经网络的学习机制,该文提出了一种有监督学习证据理论分类器。该分类器使用一种经过修改的Widmw-Hoff学习规则从训练实例中学习基本信度分配信息。新实例到来后,该分类器在所学基本信度分配的基础上,使用证据理论合成公式对新实例作分类。新分类器拓展了证据理论的应用领域。实验结果表明该分类器是有效的。