论文部分内容阅读
为了解决支持向量机(Support Vector Machine, SVM)分类器人脸识别率不高的问题,提出了一种快速主成分分析法(fast Principal Component Analysis, fast PCA)与优化参数支持向量机分类器相结合的人脸识别算法.首先,在传统的PCA算法理论基础上提出一种快速PCA算法,用于人脸图像的降维和特征提取,减少特征提取时间,降低计算量,缩短SVM识别时间;其次,利用K折交叉验证法(K-fold cross-validation method,K-CV)