论文部分内容阅读
木质纤维素沼气化是生物能源领域最具潜力的技术之一,需要各功能菌群的协同作用和调控.本文综述了水解菌群、丙酸和丁酸互营氧化菌群以及乙酸产甲烷中各类菌群的协同效能.在水解阶段,厌氧真菌与嗜氢甲烷菌、纤维素降解菌和耗氢菌形成互利菌群后,代谢途径发生改变,实现了NAD+的再生,提高了水解效率;水解菌与非水解菌通过功能互补、抑制解除方式发挥作用.丙酸和丁酸互营氧化菌群形成后,适应性变化主要体现在种间距离缩短,电子转移加快及相关基因表达水平提高等方面.高温、高乙酸及高氨氮条件下,乙酸互营氧化产甲烷途径增强,使代谢途径更加灵活.未来菌群研究可从群体感应信号和基因水平转移两方面展开:借助调控因子,结合基因和蛋白质组学等手段深入研究群体感应信号在功能菌群形成中的作用;在菌群的适应性机理方面,通过组学分析来揭示基因水平转移在菌群适应性变化及系统进化中的意义,以便为重塑菌群结构和功能改造提供理论支持.
Biogasification of lignocellulose is one of the most potential technologies in the field of bioenergy and requires the synergy and regulation of various functional microflora.In this paper, the biodegradation of bacteria, Synergistic efficiency of various types of bacteria.At the stage of hydrolysis, the anaerobic fungi and methanogenic bacteria, cellulose-degrading bacteria and hydrogen-consuming bacteria form a mutually beneficial flora, the metabolic pathways change, to achieve the regeneration of NAD + and improve the hydrolysis efficiency ; The hydrolyzable bacteria and the non-hydrolyzable bacteria play a role through the complementation of functions and the mode of releasing of inhibition.After the formation of the mutual oxidation of propionic acid and butyric acid, the adaptive changes are mainly reflected in the shortening of inter-species distance, the accelerated electron transfer and the increase of related gene expression Etc. Under the conditions of high temperature, high acetic acid and high ammonia nitrogen, the methane production by the mutual oxidation of acetic acid is enhanced and the metabolic pathway is more flexible. Future bacterial flora research can start from both the population induction signal and the gene level transfer: Gene and proteomics and other means in-depth study of the role of population sensing signals in the formation of functional flora; in the flora of the adaptive mechanism, through the omics analysis Significance of horizontal gene transfer in bacteria show adaptability and phylogenetic changes in order to provide theoretical support for the structural and functional remodeling flora transformation.