论文部分内容阅读
雷达高分辨距离像(HRRP)数据具有明显的多模分布特性.在雷达HRRP识别和拒判中,采用单个高斯核很难准确地描述HRRP数据的多模分布.针对该问题,将单个高斯核扩展到多个高斯核线性组合的形式,并将该组合形式应用到支持向量域描述(sVDD)中来处理识别和拒判问题,根据对组合系数自由度的不同限制,扩展后的多核支持向量域描述(Multi-kernel SVDD)方法可以分别表述为不同的凸优化形式:二阶锥规划(SOCP)和半正定规划(sDP),它们都可以收敛到全局最优解.新方法采用了更加复杂的核函数形式,能够更加