论文部分内容阅读
针对自然环境下作物与杂草识别精度低、实时性和鲁棒性差等问题,以幼苗期玉米及其伴生杂草为研究对象提出一种基于轻量卷积神经网络结合特征层信息融合机制的改进单步多框检测器(Single shot multibox detector与SD)模型。首先,采用深度可分离卷积结合压缩与激励网络(Squeeze-and-excitation networks,SENet)模块构建轻量特征提取单元,在此基础上通过密集化连接构成轻量化前置基础网络,替代标准SSD模型中的VGG16网络,以提高图像特征提取速度;然后基于不