论文部分内容阅读
为了解决高斯核均值漂移算法收敛速度慢、计算效率不高的问题,提出自适应over-relaxed快速动态更新方法改进高斯核均值漂移算法。首先,在静态均值漂移算法中引入数据集的动态更新机制,每次迭代后将数据集更新到新的数据点,然后,将迭代过程中聚集在一起的数据点用1个收敛点表示,逐步减少参与计算的数据,保证准确性的同时降低计算量。由于非正态分布的数据集动态更新时,主方向上的数据点的收敛速度较慢,采用over-relaxed的策略来提高主方向数据点的迭代步长,并根据数据集直径的变化,自适应地计算步长参数。实验结果