论文部分内容阅读
针对视频信息具有的多模态性质,提出了融合视音频多种模态特征信息的视频融合分析框架,用以提高视频检索的正确率和效率。该框架根据从视频底层提取出的多种图像特征、音频特征,采用基于图嵌入框架的降维算法MFA降维,根据降维后得到的各种特征向量,训练SVM分类器进行分类,并用改进后的MGR融合算法对SVM分类器输出的序号矩阵进行融合分析。实验结果表明该融合框架融合多种特征提高了分类识别的效率,采用了改进的融合算法降低了计算复杂度,提高了系统的整体性能。