论文部分内容阅读
为了提高动态数据集上模糊关联分类器(FAC)的建模效率,提出了一种基于演进向量量化(eVQ)聚类的增量模糊关联分类方法。首先,采用eVQ聚类算法增量更新数量属性上的高斯隶属度函数参数;然后,扩展早剪枝更新(UWEP)算法,使之适用于增量挖掘模糊频繁项;最后,以模糊相关度(FCORR)和分类规则前件长度为度量方式裁剪并更新模糊关联分类规则库。在4个UCI标准数据集上的实验结果表明,与批量模糊关联分类建模方法相比,所提方法能够在保证分类精度和解释性的前提下,减少模糊关联分类器的训练时间;基于eVQ的高斯