【摘 要】
:
基于非均匀变异算子的状态空间进化算法(NUMSEA)是一种具有新颖性的实数编码进化算法.针对传统的状态空间进化算法转移矩阵的不足,设计一种基于非均匀变异等算子改进的状态空间
【基金项目】
:
国家自然科学基金(61074018)
论文部分内容阅读
基于非均匀变异算子的状态空间进化算法(NUMSEA)是一种具有新颖性的实数编码进化算法.针对传统的状态空间进化算法转移矩阵的不足,设计一种基于非均匀变异等算子改进的状态空间转移矩阵.该矩阵突破了传统的状态空间转移矩阵,并在此基础上增加了非均匀变异算子以及非均匀算术交叉算子.通过提取分析每一代的最适值,再左乘新的转移矩阵,能够在原有的最优个体附件进行微小的搜索.进一步实现了转移矩阵随群体中个体适应度值的自适应变化,上一代群体中适值越大的个体在生成新个体时所作的贡献越大,算法的收敛速度也将增加.实验结果表明,
其他文献
在传统谱聚类算法中,构造相似矩阵时需要人为输入尺度参数;除此之外,之后的k-means过程中还需要人工输入确切的聚类数目,而以上两个参数对聚类效果影响巨大。针对以上问题,提出了
VXLAN作为overlay网络技术的代表,为解决云数据中心的组网问题提供了有效的技术支持,使网络更具可扩展性。但传统VXLAN技术是基于数据平面的,存在诸多局限性。早在EVPN之前,
K-means聚类算法是基于划分的经典聚类算法之一,因其简洁、高效得到了广泛的应用。K-means算法具有容易实现、时间和空间复杂度较小的优点。但该算法的初始聚类数K通常不能通
形变、重力分会场学术交流会议交流了20篇论文,有6篇摘要做了会议报告。本次大会的主题为“汶川地震研究及30年来地震科学进展与展望”,报告的内容也是围绕这一主题展开的。
有限高斯混合模型广泛应用于模式识别、机器学习和数据挖掘等领域,但现实中的许多数据都具有非高斯性,而高斯混合模型无法准确地描述这些数据。此外,有限高斯混合模型还存在参数
针对传统迭代算法在解决大规模问题时速度较慢的问题,在介绍了压缩感知中重构的基本模型以及传统不动点迭代方法(FPC)的基础上,提出了一种新的重构算法-快速不动点迭代方法(FFPC