论文部分内容阅读
互联网络中,计算机和设备随时受到恶意入侵的威胁,严重影响了网络的安全性。入侵行为具有升级快、隐蔽性强、随机性高的特点,传统方法难以有效防范,针对这一问题,本文提出一种基于支持向量机(SVM)的网络入侵检测集成学习算法,利用SVM建立入侵检测基学习器,采用AdBoost集成学习方法对基学习器迭代训练,生成最终的入侵检测模型,仿真实验表明入侵检测模型更加贴近真实的网络入侵样本,减小了小样本集导致的模型精度大幅下降的问题,同时模型的整体检测精度也有较大的提升。