论文部分内容阅读
低温凝聚InSb膜,底板温度的改变可以诱导金属-半导体转变。金属型非晶InSb,以电子导电为主,半导体型非晶InSb则以空穴导电为主。金属型非晶InSb,在液氮温度和0.1T磁场下呈现出电子-电子相互作用行为。金属型非晶InSb的结构弛豫,不仅可以导致近程有序度的提高,而且可能导致电子结构的变化。第一电导跃变主要起源于电子迁移率的大辐度增加,系统由类液非晶态弛豫到类点阵非晶态。金属型非晶InSb中,不同的结晶相变类型表现出不同的输运行为。金属型非晶InSb和亚稳中间相是载流子浓度(n_0~10`(18)cm~(-3))最低的超导体系之一,且亚稳中间相的超导Tc与态密度有关,高的Tc值对应于高的态密度。准二维的层状结构对超导电性有利。
Low temperature cohesion InSb film, the substrate temperature changes can induce metal-semiconductor transition. Metal-type amorphous InSb, electronic conductivity-based, semiconductor-type amorphous InSb is mainly hole conduction. Metallic amorphous InSb exhibits electron-electron interaction behavior at liquid nitrogen temperature and 0.1T magnetic field. The structural relaxation of a metal-type amorphous InSb can not only lead to an increase in the degree of short-range order but also to a change in the electronic structure. The first conductance transition mainly originated from the large increase of electron mobility, and the system was relaxed from liquid-like to quasi-lattice amorphous. In the amorphous amorphous InSb, different types of crystalline phase transitions show different transport behaviors. Metallic amorphous InSb and metastable mesophase are one of the superconducting systems with the lowest carrier concentration (n_0 ~ 10 ’(18) cm ~ (-3)), and the superconducting Tc of the metastable mesophase and the density of state The high Tc value corresponds to a high density of states. Quasi-two-dimensional layered structure is advantageous for superconductivity.