The study of estimation method of broadband emissivity from EOS/MODIS data

来源 :High Technology Letters | 被引量 : 0次 | 上传用户:nannana001
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The broadband emissivity is an important parameter for estimating the energy balance of the Earth.This study focuses on estimating the window(8-12 |xm) emissivity from the MODIS(moderate-resolution imaging spectroradiometer) data,and two methods are built.The regression method obtains the broadband emissivity from MOD11B1 5KM product,whose coefficient is developed by using 128 spectra,and the standard deviation of error is about 0.0118 and the mean error is about0.0084.Although the estimation accuracy is very high while the broadband emissivity is estimated from the emissivity of bands 29,31 and 32 obtained from MOD11B1 5KM product,the standard deviations of errors of single emissivity in bands 29,31,32 are about 0.009 for MOD11B1_5KM product,so the total error is about 0.02 and resolution is about 5km×5km.A combined radiative transfer model with dynamic learning neural network method is used to estimate the broadband emissivity from MODIS 1B data.The standard deviation of error is about 0.016,the mean error is about0.01,and the resolution is about 1km ×1km.The validation and application analysis indicates that the regression is simpler and more practical,and estimation accuracy of the dynamic learning neural network method is higher.Considering the needs for accuracy and practicalities in application,one of them can be chosen to estimate the broadband emissivity from MODIS data. The broadband emissivity is an important parameter for estimating the energy balance of the earth. This study focuses on estimating the window (8-12 | xm) emissivity from the MODIS (moderate-resolution imaging spectroradiometer) data, and two methods are built. regression method obtains the broadband emissivity from MOD11B1 5KM product, whose coefficient is developed by using 128 spectra, and the standard deviation of error is about 0.0118 and the mean error is about 0.0084.Although the estimation accuracy is very high while the broadband emissivity is estimated from the emissivity of bands 29, 31 and 32 from MOD11B1 5KM product, the standard deviations of errors of single emissivity in bands 29, 31, 32 are about 0.009 for MOD11B1_5KM product, so the total error is about 0.02 and resolution is about 5km × 5km. A combined radiative transfer model with dynamic learning neural network method is used to estimate the broadband deviation from MODIS 1B data. The standard deviation of error is ab out 0.016, the mean error is about 0.01, and the resolution is about 1 km × 1 km. The validation and application analysis shows that the regression is simpler and more practical, and estimation accuracy of the dynamic learning neural network method is higher. needs for accuracy and practicalities in application, one of them can be chosen to estimate the broadband emissivity from MODIS data.
其他文献
在Hausdorff局部凸拓扑线性空间中,对于集值优化问题(SOP),利用contingent上图切导数,引进了集值映射超有效意义下的广义梯度.在目标函数为锥类凸的集值映射并且具有连通性条件
近年来,国内部分热门城市房地产投资过热,土地资源紧缺,房价快速上涨已经成为社会关注焦点.探索房价波动与征用集体土地房屋的货币补偿之间的关系,对政府与房地产商解决城市
请下载后查看,本文暂不支持在线获取查看简介。 Please download to view, this article does not support online access to view profile.
期刊
我们1205钻井队是铁人王进喜带出的队伍。1953年9月在玉门油矿组建,1960年3月来大厌参加石油大会战。先后被命名为”铁人钻井队”、“钢铁钻井队”、”卫星钻井队”,荣获全
各种应用数学和物理学中总会出现奇异微分方程,如:原子结构、气体动力学、化学反应的研究。所以,这类问题受到了学者广泛的关注并对其进行了研究。并且这类方程精确解的解析表达
本文基于复合二项模型,主要研究了在什么样的策略下保险公司可以将分红最大化的问题,即最优分红问题.复合二项模型最早Gerber(1988)[1]提出,它很好的刻画了离散时间保险风险
经典DEA模型一般只考察没有子系统且只有一个阶段的简单生产过程,但随着时间的推移,最初的模型已不足以适应越来越广泛的应用领域。因此,相关学者分别提出了带有独立子系统(并联)
建设中原经济区要重视引进国外高层次人才。当前,河南省引智工作取得了显著成效,但也面临一些亟待解决的问题。本文对这些问题进行了梳理,提出了创新体制机制、实施引智工程
随机最优控制是现代控制理论的一个重要分支。近几十年来被广泛应用于工程、经济、金融、生物、管理等领域。随机最优控制模型的研究适于二十世纪六十年代,在随后的二十多年中
A new chromogenic and fluorescent ‘‘turn-on“ chemodosimeter 3 was designed and synthesized by using a fluoride-sensitive self-immolative linker, in combinati