论文部分内容阅读
为提升电力系统设备状态识别效果,文中提出了卷积神经网络的电力系统设备状态智能识别方法。首先采集电力系统设备状态图像,采用卷积神经网络获取图像特征,然后根据图像内状态信息修正卷积神经网络参数,更新权值公式提取修正误差后的设备状态特征,将特征输入神经网络进行学习,建立电力系统设备状态智能识别模型,最后仿真测试结果表明,该方法可准确识别电力系统设备状态,识别10种设备状态准确率高达99%以上,且实时性高。