论文部分内容阅读
本征音子说话人自适应算法在自适应数据量充足时可以取得很好的自适应效果,但在自适应数据量不足时会出现严重的过拟合现象。为此该文提出一种基于本征音子说话人子空间的说话人自适应算法来克服这一问题。首先给出基于隐马尔可夫模型-高斯混合模型(HMM-GMM)的语音识别系统中本征音子说话人自适应的基本原理。其次通过引入说话人子空间对不同说话人的本征音子矩阵间的相关性信息进行建模;然后通过估计说话人相关坐标矢量得到一种新的本征音子说话人子空间自适应算法。最后将本征音子说话人子空间自适应算法与传统说话人子空间自适应