论文部分内容阅读
为了提高支持向量机(SVM)分类性能,同时针对果蝇优化算法(FOA)寻优精度不高和易陷入局部最优的特点,提出了一种改进的FOA算法(LFOA),并将其应用于SVM的参数寻优中。该方法在运算个过程中根据果蝇种群的进化程度,动态的将种群分为较差子群和较优子群;较差子群在最优个体的指导下以基本FOA算法进行全局搜索,较优子群则围绕最优个体做Levy飞行,进行精细化局部搜索;两个子群的信息通过全局最优个体的更新和种群个体的重组进行交换。通过对UCI数据库中几个经典数据集的分类测试结果表明,基于LFOA优化S