论文部分内容阅读
The structural, electronic, and magnetic properties of transition metal doped platinum clusters MPt 6 (M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) are systematically studied by using the relativistic all-electron density functional theory with the generalized gradient approximation. Most of the doped clusters show larger binding energies than the pure Pt 7 cluster, which indicates that the doping of the transition metal atom can stabilize the pure platinum cluster. The results of the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gaps suggest that the doped clusters can have higher chemical activities than the pure Pt 7 cluster. The magnetism calculations demonstrate that the variation range of the magnetic moments of the MPt 6 clusters is from 0 μ B to 7 μ B , revealing that the MPt 6 clusters have potential utility in designing new spintronic nanomaterials with tunable magnetic properties.
The structural, electronic, and magnetic properties of transition metal doped platinum clusters MPt 6 (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) are systematically studied by using the relativistic all-electron density functional theory with the generalized gradient approximation. Most of the doped clusters show larger binding energies than the pure Pt 7 cluster, which indicates that the doping of the transition metal atom can stabilize the pure platinum cluster. The results of the highest occupied molecular orbital (HOMO) -lowest unoccupied molecular orbital (LUMO) gaps suggest that the doped clusters can have higher chemical activities than the pure Pt 7 cluster. The magnetism calculations demonstrate that the variation range of the magnetic moments of the MPt 6 clusters is from 0 μ B to 7 μ B, revealing that the MPt 6 clusters have potential utility in designing new spintronic nanomaterials with tunable magnetic properties.