论文部分内容阅读
叶绿素含量是表征粳稻生长状态的重要指标,高光谱遥感技术能够无损、快速的获取粳稻叶片叶绿素含量。本研究利用2015—2017年沈阳农业大学辽中水稻实验站粳稻叶片高光谱数据,并利用主成分分析法(PCA)、典型相关分析法(CCA)、核典型关联分析法(KCCA)3种方法对粳稻叶片高光谱信息降维,选出较优光谱参数作为叶绿素含量反演模型的输入变量。采用支持向量机回归(SVR)、神经网络(NN)、随机森林(RF)、偏最小二乘法(PLSR)四种机器学习算法建立粳稻叶片叶绿素含量反演模型。结果表明,KCCA降维方法对粳稻叶