【摘 要】
:
轨迹精度是工业机器人重要的动态性能,目前工业机器人的轨迹精度远低于定位精度,提出一种基于机器人运动学标定和关节空间插值误差补偿的方法来提高机器人轨迹精度.基于MD-H方法建立机器人的运动学模型,在此基础上运用机器人微分运动学理论建立末端位置误差模型和轨迹误差模型.为克服最小二乘法等传统方法在数据噪声较大且不符合高斯分布时收敛慢甚至发散的问题,提出一种基于扩展卡尔曼滤波算法的机器人运动学参数辨识方法,实现运动学参数辨识的快速收敛.经过分析发现机器人误差在关节空间具有连续性的特点,为此提出一种关节空间插值误差
【机 构】
:
昆明理工大学机电工程学院 昆明 650500
论文部分内容阅读
轨迹精度是工业机器人重要的动态性能,目前工业机器人的轨迹精度远低于定位精度,提出一种基于机器人运动学标定和关节空间插值误差补偿的方法来提高机器人轨迹精度.基于MD-H方法建立机器人的运动学模型,在此基础上运用机器人微分运动学理论建立末端位置误差模型和轨迹误差模型.为克服最小二乘法等传统方法在数据噪声较大且不符合高斯分布时收敛慢甚至发散的问题,提出一种基于扩展卡尔曼滤波算法的机器人运动学参数辨识方法,实现运动学参数辨识的快速收敛.经过分析发现机器人误差在关节空间具有连续性的特点,为此提出一种关节空间插值误差补偿方法,建立网格形式的误差补偿数据库,并利用关节空间距离权重函数和已知的网格顶点误差计算各控制点的关节转角误差.通过试验对所提出的参数辨识和关节空间误差补偿方法进行了验证,试验结果表明:经过运动学参数辨识和补偿后机器人的绝对定位精度由1.039 mm提高到0.226 mm,轨迹精度由2.532 mm提高到1.873 mm,应用关节空间插值误差补偿后机器人的轨迹精度进一步提高到1.464 mm.
其他文献
针对目前无铅电子封装中主流应用的Sn3.0Ag0.5Cu钎料,研究了其直径为600~60 μm的焊球在开孔型Cu基底(焊盘)上260℃恒温回流不同时间(10~300 s)形成跨尺度凸点结构Sn3.0Ag0.5Cu/Cu微互连焊点时界面金属间化合物(IMC)的生长与演化行为,以及跨尺度微焊点的剪切性能与断裂行为.研究结果表明,焊球直径大于200μm时焊点界面IMC生长速率随其尺寸减小而增大,而焊球直径小于200μm时焊点界面IMC生长速率随焊球直径减小呈减小趋势.对微焊点界面显微组织演化的分析表明,界面IM
针对多关节上肢外骨骼重复性康复训练非线性求解困难问题,提出了一种闭环PD迭代学习控制方法.基于人体工学确定了六自由度上肢外骨骼康复机械臂的参数、自由度配置与关节运动范围.以人机交互力为耦合方式,建立了基于牛顿-欧拉法的人机耦合模型,完成了人机耦合动力学模拟分析.基于迭代学习控制理论提出外骨骼康复机械臂的闭环PD迭代学习控制方法,通过建模仿真分析了肩关节/肘关节迭代学习控制的轨迹误差、人机交互力和驱动力矩.第三次迭代后的轨迹误差小于0.05rad,PD迭代学习控制器的输出对系统控制进行了有效的补偿,提高了系
为满足垂直降落重复使用运载器多工况着陆分析时模型精度与求解效率相兼顾的需求,搭建了对称着陆模式下的准三维动力学模型,模型中考虑了运载器主体平面运动、足垫空间运动及支柱侧向载荷,同时基于集中参数法建立了油液缓冲力模型,并引入了含Stribeck效应的滑移-粘滞摩擦力及非线性接触力来构建地面作用力模型.在此基础上,开发出运载器着陆动力学分析程序,结合径向基函数代理模型与模拟退火优化方法给出了以着陆倾角、结构过载、缓冲行程、支柱载荷及反弹高度为指标的七种极限着陆工况,分析了各工况下的缓冲性能及着陆稳定性能,得到
物体硬度感知对于机器人进行物体灵巧操作具有重要意义.针对物体硬度感知中传感信号复杂、物体压缩量大而导致的系统鲁棒性差以及容易损伤物体的问题,提出了一种基于触觉传感的机器人抓取对象硬度感知方法.该方法使用两指夹持器轻微挤压物体,通过安装在两指指尖的柔性触觉传感器阵列采集压力序列信号.将压力序列信号进行多项式处理得到非线性特征序列,使用基于决策树的Adaboost算法处理非线性特征序列,实现抓取物体在线硬度等级分类.将基于决策树的Adaboost算法和其他各种算法进行比较,并进行实际物体硬度识别实验.实验结果
精确提取陶瓷层(Top coat,TC)与热生长氧化层(Thermally grown oxide,TGO)层在太赫兹频段的折射率是进行热障涂层(Thermal barrier coatings,TBCs)太赫兹无损检测研究的重要条件.由于对涂层样品只能采取反射式测量,所以首先比较了反射式与传统透射式测量条件下提取样品太赫兹光学参数及厚度的结果,随后利用反射式太赫兹时域脉冲成像系统提取等离子体喷涂的8YSZ热障涂层(TBCs)中TC层与TGO层的折射率,并依据所提取折射率进一步对TC层的厚度分布进行测量及
滚动疲劳裂纹等钢轨表面裂纹的存在会掩盖钢轨深层的核伤而导致漏检,同时,表面裂纹趋向于向水平和竖直方向扩展,造成钢轨表面掉块或钢轨断裂.为缩短检测空窗期,进一步提高高铁运行效率,实现钢轨表面裂纹的高速检测,基于交流电磁场检测技术开展钢轨表面裂纹高速检测技术研究.针对钢轨检测过程中存在的抖动和过高低轨现象,提出“滑靴”结构交流电磁场检测探头,根据钢轨表面裂纹分布特点,采用有限元法分析和优化探头排布;探究“滑靴”厚度对信号的影响.研发交流电磁场检测技术高速钢轨检测车模块,采用高速转盘试验和真实滚动疲劳裂纹检测试
本文以Cu/Sn/Cu-xZn(x=0,5,20 wt.%)微焊点为研究对象,探究Zn含量对其在等温和温度梯度下回流时液-固界面反应的影响.等温回流时,微焊点两端界面金属间化合物(Intermetallic compound,IMC)呈对称性生长,且随着Zn含量增加,两端界面IMC厚度略有减小,表明在Cu基体中添加Zn对等温回流时界面IMC生长的抑制作用不明显.温度梯度下回流时,冷、热两端界面IMC呈非对称性生长,且随着Zn含量增加,冷端界面IMC厚度明显减小,表明添加Zn对冷端界面IMC生长有显著抑制作
以重载大扁平比轮胎为研究对象,基于弹性基础的柔性胎体模型为基础,分别从大扁平比胎侧曲梁的刚度建模、基于解析弹性基础的轮胎动力学建模两方面开展研究.建立考虑预紧力弦效应和结构弯曲效应的大扁平比胎侧曲梁解析刚度模型,并研究胎侧曲梁非均匀截面特性和几何、结构参数对解析刚度的影响规律.结果表明:①重载轮胎在0~180Hz范围以结构周向弯曲振动为主,与基于弹性基础的柔性梁模型一致;②大扁平比胎侧曲梁的解析刚度与胎侧的几何、结构和充气压力参数直接相关;③轮胎充气压力影响柔性胎体梁的轴向预紧力和胎侧的弦刚度,进而影响轮
金属增材制造过程中不可避免地会产生气孔和未熔合缺陷.尽管采取参数优化和后热处理能够在一定程度上降低缺陷水平,但至今尚无有效方法予以完全消除.这些缺陷作为典型的应力集中源,会诱导疲劳裂纹形核,从而大幅降低材料的疲劳强度和寿命,被视为增材构件可靠性服役的“顽疾”.从静态缺陷表征、动态缺陷演化、缺陷分级、缺陷-疲劳强度设计方法以及缺陷-疲劳寿命评估技术等五个方面论述增材制造缺陷与疲劳行为的研究进展.重点介绍借助X射线成像技术开展缺陷特征及演化的三维、无损、可视化表征与定量统计方法;进一步地,论述基于同步辐射光源
基于对人体行走的能耗分析,设计了一种新型有源无动力踝关节外骨骼.首先,基于耦合摆模型建立人体行走摆动相动力学方程并采用打靶法求解.根据动量守恒原理分别计算摆动腿膝关节锁定、脚跟着地以及关节摩擦引起的能耗率.计算结果表明,脚跟着地引起的能耗率远大于膝关节锁定和关节摩擦引起的能耗率.然后,基于该能耗分析结果设计了一种足底弹性储能机构将脚跟着地时的能耗存储起来,在跖屈蹬地阶段释放助力.通过前脚掌压力信号控制电磁铁驱动的离合机构,实现对助力弹簧夹紧与释放的状态切换.样机实验结果表明:足底储能机构可以提高外骨骼的输