论文部分内容阅读
提出了一种基于全连接神经网络(FNN)的图像重新着色算法。该算法提取着色线条所在区域的像素RGB颜色特征值和相应的着色线条分类为数据集,为了减少神经网络的训练时间,对数据集进行了采样;把FNN作为一个像素级的多分类神经网络,利用这些训练数据训练FNN,将待重新着色图像中逐个像素的特征值作为神经网络的输入,获得每个像素属于着色线条的似然概率;根据神经网络输出的每个像素属于着色线条的似然概率,计算最终的图像重新着色结果。与现有的基于卷积神经网络的图像重新着色方法相比,该方法避免了神经网络在训练阶段需要大