论文部分内容阅读
基于Bandelet变换能自适应跟踪图像几何方向的特点,将Bandelet变换引入到金属断口图像特征提取中,提出了一种基于Bandelet变换的金属断口形貌非线性识别方法。在提出的方法中,利用Bandelet变换提取金属断口图像的Bandelet熵作为特征向量,神经网络作为非线性分类器,对几种典型的金属断口图像进行了识别验证。同时,将该方法与基于传统的小波变换的金属断口图像识别方法进行了对比。结果表明,由于Bandelet变换克服了小波变换在处理金属断口图像时孤立对待边界各点的缺点,得到了比传统的小