论文部分内容阅读
金属酶活化双氧的过程对生物体内新陈代谢、信号转导等一系列功能至关重要。生物体内实现双氧活化功能的金属酶主要有血红素酶和非血红素酶两类。对模型化合物催化双氧活化过程中间体的表征及催化反应产物的分析可以揭示金属酶的双氧活化机理;对模型化合物的反应活性与配体电子效应的研究将为配合物催化剂的配体设计提供指导。特别是血红素酶和非血红素酶可以实现对C—H键的选择性活化,这是化学反应的难题之一。因此这些模型化合物可以被用做催化剂来解决药物发现、工业生产以及能源转化中的难题。本文介绍了血红素酶和单核非血红素酶模型化合物在机理研究上的近期进展,分析了卟啉类似物、二组氨酸一羧酸面式结构酶模型化合物等模型的设计思想和高价金属氧合中间体的电子结构,总结了配体电子效应和模型化合物催化活性之间的关系。最后,提出了目前模型化合物在双氧活化研究中存在的一些不足,并对其在基础研究及应用方面的发展进行了展望。
Metal enzyme activation of the process of dioxygen in vivo metabolism, signal transduction and a series of functions is crucial. Bio-organism to achieve the function of dioxygenase mainly heme enzymes and non-heme enzymes two types. Analysis of model compounds catalyze activation of dioxygen intermediates characterization and catalytic reaction products can reveal dioxygen activation mechanism metalloenzymes; Study of model compounds reactive with the electronic effect of the ligand will be designed with the ligand complex catalyst Provide guidance. In particular, heme and non-heme enzymes enable the selective activation of C-H bonds, which is one of the challenges of chemical reactions. Therefore, these model compounds can be used as catalysts to solve problems in drug discovery, industrial production and energy conversion. In this paper, recent advances in the mechanism of heme and mononuclear non-heme enzyme model compounds are introduced. The design principles and high prices of porphyrin analogues and dihistidine monoacid type surface structure enzyme model compounds are analyzed The electronic structure of metal oxygenated intermediates summarizes the relationship between the electronic effects of the ligands and the catalytic activity of the model compounds. Finally, some shortcomings of the present model compounds in the study of dioxygenation are put forward, and their development in the basic research and application are prospected.