【摘 要】
:
目前,多方向文本检测方法已经在各种数据集上取得了不错的性能,但是任意形状文本检测仍然存在一些困难,尤其是具有不同大小、形状、方向、颜色和样式的文本实例。为了更好地区分连续任意形状的文本实例和周边非文本区域,提出了一种基于分段的文本检测器,通过使用多边形偏移蒙版和边界增强来检测任意形状的场景文本。为了评估该方法的有效性,在ICDAR2015和Total-Text等公开数据集上进行了多组对比实验,实验
【机 构】
:
武汉科技大学计算机科学与技术学院,武汉科技大学智能信息处理与实时工业系统湖北省重点实验室,武汉科技大学大数据科学与工程研究院
【基金项目】
:
国家自然科学基金资助项目(61673304),国家社会科学基金重大计划资助项目(11&ZD189)。
论文部分内容阅读
目前,多方向文本检测方法已经在各种数据集上取得了不错的性能,但是任意形状文本检测仍然存在一些困难,尤其是具有不同大小、形状、方向、颜色和样式的文本实例。为了更好地区分连续任意形状的文本实例和周边非文本区域,提出了一种基于分段的文本检测器,通过使用多边形偏移蒙版和边界增强来检测任意形状的场景文本。为了评估该方法的有效性,在ICDAR2015和Total-Text等公开数据集上进行了多组对比实验,实验结果证明该方法有着更卓越的性能。
其他文献
兴趣点(POI)推荐可以帮助用户发现其没有访问过但可能感兴趣的地点,是重要的基于位置的服务之一。时间在POI推荐中是一个重要因素,而现有POI推荐模型并没有较好地考虑时间因素,因此通过考虑时间因素来提出融入时间的POI协同推荐(TUCF)算法,从而提高POI推荐的效果。首先,分析基于位置的社交网络(LBSN)的用户签到数据,以探索用户签到的时间关系;然后,利用时间关系对用户签到数据进行平滑处理,以
针对卷积操作目标跟踪算法(ECO-HC)在遮挡、背景等干扰问题导致跟踪精度下降的问题,提出了一种自适应特征融合的卷积相关滤波算法,将CN与HOG特征进行加权融合,通过计算各自的响应来确定各自特征在下一帧的权重,将特征各自的优势充分发挥出来。此外,针对目标跟踪失败问题,提出利用形变相似多样性原理,构建目标重定位模块,当出现遮挡、快速移动等复杂情况造成跟踪的可靠性降低时,综合考虑目标响应得分、空间权重
针对高光谱和Li DAR成像优势,通过构建三维深度胶囊网络(3D-deep capsule network,3D-DCN)探索了这两种遥感数据源在城市地物分类上的应用。该网络通过使用两层3D-CNN结构实现融合后数据的非线性特征映射,然后紧跟胶囊网络生成代表特征的矢量并实现卷积、封装和分类;针对胶囊网络层间的非线性激活函数提出一种称为e-squash的非线性激活函数用于特征学习。在城市数据集上的分
以往对影响力最大化问题的研究大多是基于静态图进行优化研究,但在现实中,网络数据量随着时间不断增加,系统不可能实时获取到整个网络中节点之间的连接情况。在传统Max G探测模型的基础上,采用固定邻域规模和节点邻域层级相结合的方式计算节点影响力大小,提出了新的动态网络探测算法RAS-MaxG (regular area scale-MaxG),解决了传统探测算法由于采用度来衡量节点影响力值所导致的节点之
传统储层含油性勘测方法利用地震波穿过地层时产生的相关地震属性和地质钻井资料结合传统地球物理方法进行综合研判,但该类勘测方法往往存在研判成本高且对专家先验知识依赖性强的问题。针对该问题,以江苏油田苏北盆地的地震资料为基础,并结合含油样本的稀疏性和随机性,提出了一种基于多粒度时序结构表示的异常检测算法,直接利用叠后地震道数据进行预测。该算法首先对于单个地震道数据提取多粒度时序结构并形成独立特征表示;其
社会力模型是人群仿真领域的经典模型,自1995年提出后就被广为引用和拓展,该模型2000年又推出一个改进版,增加了恐慌度概念。虽然目前基于社会力模型的研究已经很多,但是针对恐慌度概念分析的研究尚不多见。为此梳理了社会力模型中关键参数物理意义和恐慌度的概念,用恐慌度的变化来解释人群疏散中的“快即是慢”与“从众行为”现象。指出了社会力模型中由于对行人感知描述得不够细致,导致在一定条件下,人群仿真结果存
研究Σ型基于属性身份识别与Σ型基于身份身份识别的关系,提出Σ型去中心基于属性身份识别的一般性构造方案。该方案利用平滑秘密共享方案,将Σ型基于身份身份识别方案转换成Σ型去中心基于属性身份识别方案。利用归约方法,证明了该方案的安全性。通过所提出的构造方案,给出一个Σ型去中心基于属性身份识别实例,并将其与已有的Σ型基于属性身份识别方案进行效率比较分析。分析结果表明,所提方案在数据长度和计算开销两方面都更
传统拓扑控制算法采用单个效用函数,无法适应网络性能需求的动态变化。在拓扑控制中引入了博弈论,提出了两个具有不同优化目标的效用函数。当节点剩余能量较高时,选择一个全面考虑能量均衡度、网络能耗、网络连通性等因素的效用函数;否则,为了尽可能降低节点能耗而选择另一个更趋向于较低功率的效用函数。实验表明,采用双效用函数的拓扑博弈算法在网络寿命、能量均衡度等方面具有较好的性能。
传统的载体选择式图像隐写需要人工构建图像和秘密信息的关系,且鲁棒性不强。针对这个问题,提出了一种载体选择型图像隐写算法,该方案结合图像检索的思想,使用Star GAN的判别器作为特征提取器,将提取的特征映射为秘密消息,直接构造了图像和秘密消息的映射关系,并采用了特征更新、搜图更新等方式更新关系库,自动化更新映射关系库。实验证明,该方案具有较高的隐写容量和较好的鲁棒性,在图像质量不高时,提取准确率比
针对现有的广告点击率预估模型未能精准挖掘用户历史兴趣及历史兴趣对目标广告点击与否的影响,提出了一种基于改进Transformer的广告点击率预估模型。该模型采用Transformer网络捕捉隐藏在用户点击序列背后的潜在历史兴趣;同时针对Transformer建模用户历史兴趣无法有效关联目标广告的问题,提出了一种改进的Transformer网络。改进后的Transformer不但有效建模用户历史兴趣