论文部分内容阅读
针对光伏短期预测不能考虑云团因素以及云团移动机理建模复杂的问题,对模型与数据混合驱动的分布式光伏超短期高精度功率预测方法进行研究。首先,采用深度神经网络模型,实现辐照度和温度与光伏功率的高精度拟合;其次,基于区域多个分布式光伏电站的实际监测数据,建立数据驱动的云团遮挡判别模型;最后,结合云团遮挡情况及其移动态势对邻近电站的影响分析,实现分布式光伏超短期功率的精准预测。依托国内某区域多个分布式光伏电站历史数据进行算例分析,仿真结果验证了所提分布式光伏超短期功率预测方法的有效性和实用性。