论文部分内容阅读
摘 要:弹性箔片轴承支承的转子在高速旋转时,转子可能会和轴承发生碰摩。为了揭示当转子采用不同结构刚度箔片支承时,该冲击对转子振动的影响机理,针对2个径向GFBs支承的刚性转子系统模型,应用龙格库塔法求解转子动力学状态方程,获得3种结构刚度箔片(均匀刚度箔片、软箔片、硬箔片)下的轴颈位移。推导出箔片轴承的等效刚度和等效阻尼系数,发现当轴颈无涡动时,箔片轴承的等效刚度正好是气膜刚度和箔片结构刚度的串联;而当轴颈有涡动时,箔片轴承的等效刚度和等效阻尼均是结构刚度、结构阻尼和涡动频率的函数,且当轴颈涡动频率趋于无穷大时,上述等效刚度和等效阻尼趋于无涡动时的值。计算表明,当采用恒定刚度箔片时,转子稳态振幅最小,但是瞬态响应时间较长;当采用非线性软箔片时,转子稳态振幅最大,但是瞬态响应时间最短。当增大非线性箔片的结构刚度时,转子稳态振幅会减小,瞬态响应时间会增加。因此,箔片的设计需要辅以轴承-转子动力学特性的考量,以获得箔片结构刚度和结构阻尼的合理匹配。
关键词:弹性箔片轴承;等效刚度;等效阻尼;瞬态冲击;稳态响应
中图分类号:TB 122 文献标志码:A
文章编号:1672-9315(2019)05-0912-07
Abstract:The rotor supported by gas foil bearings(GFBs)may collide with the bearings at a high speed.In order to reveal the mechanism of the impact on rotor vibration when the rotor is supported by GFBs with various structural stiffness,the paper takes a 2 GFBs-rigid rotor system models as examples,uses the Runge-Kutta method to solve the state equation of rotor dynamics,and obtains the journal displacements of the rotor supported by three different structural stiffness foils(uniform,soft,and hard foils).The equivalent stiffness and damping coefficient of foil bearing are derived.It was discovered that the equivalent stiffness of the GFB is the series connection of the gas film stiffness and the foil structural stiffness for the static journal.The equivalent stiffness and damping of the GFB are functions of structural stiffness,structural damping and vortex frequency,and approach to the values of the static journal when the vortex frequency becomes infinity.The results show that the steady amplitude of rotor is the smallest,but the transient response time is longer when the constant stiffness foil is used;for the nonlinear soft foil,the steady amplitude of the rotor is maximum,but the transient response time is minimum;when the structural stiffness of the nonlinear foil is increased,the steady amplitude of rotor decreases and the transient response time increases.Therefore,the design of foil needs to be supplemented by the consideration of the dynamic characteristics of the bearing-rotor in order to obtain a reasonable match of the structural stiffness and damping of the foil.
Key words:Gas Foil Bearings(GFBs);equivalent stiffness;equivalent damping;transient shock;steady state response
0 引 言
近年來,弹性箔片轴承支承的高速永磁同步电机驱动的离心压缩机已经成为各国竞相研究的热点[1-5],但在应用中通往超高速时始终面临着以下关键问题:系统的动力不稳定。由于气体轴承的低阻尼特性,气体轴承转子系统中的不稳定现象往往比油润滑轴承转子系统更为明显。同时,尽管弹性箔片轴承与刚性表面轴承相比具有更为优秀的抗涡动性能,但是仍然无法避免因旋转效应而产生的自激振荡。在弹性箔片轴承中除了有限的气膜阻尼之外,唯一能为高速转子提供稳定性保障的只剩下库仑摩擦阻尼[6]。大量实验数据显示,当转子在超高速下运行时,转子的轴心轨迹频谱中会含有亚同步涡动分量,不同学者在不同的试验台上测得的亚同步涡动频率大致在100~400 Hz之间[7-9]。目前对该现象的解释有较多分歧,有学者认为是由轴承内的气膜涡动所引起,有的则认为是不平衡量造成,还有的归结为轴承非线性结构刚度原因[10],但有一点是相同的,即该亚同步涡动频率与箔片轴承-转子系统的刚体自然频率接近。Kim和San Andres对转子动力性能测试表明:在轴承端部供应压缩空气会延迟转子亚同步涡动出现的转速,增强转子动力稳定性[11]。Kim和San Andres在文献[12]中的研究表明:在拱箔下面安装金属膜片是最经济的增加预紧方式,它增加了气膜内的压力场,测试表明加膜片的弹性箔片轴承使得大幅值亚同步涡动发生时的转子转速延后了。按照Sim的理解,大幅值亚同步涡动是由大的不平衡量造成,箔片预紧只是一种很好的抑制或者推迟亚同步涡动出现的补救措施[13]。虽然,人们对亚同步涡动出现的原因尚未达成统一意见,但为了提高轴承的抗涡动能力,即稳定性,增加轴承的阻尼确是毋庸置疑的选择。Heshmat曾经尝试过采用喷涂2.5 μm厚铜涂层的拱箔来改善轴承的阻尼(库伦阻尼)特性,但是效果不明显[14]。为了增加GFBs的阻尼,San Andres 引入了金属网,替代了原来的拱箔,这种金属网结构具有很大的机械能耗散能力(材料阻尼大),且气膜动态阻尼几乎不随转速变化,但是轴承的刚度会有所降低[15-16]。为了避免金属网箔片轴承低刚度特性,可以将吸振材料移到轴承套的外表面,充填在轴承套外表面的槽内[17]。此外,还有其他一些提高阻尼的结构,比如拱箔-金属网混合型[18]、油润滑型GFB[19]。 以上增強阻尼的措施对解决工程问题是非常适用的,但为探究亚同步涡动现象的机理,则需进行轴承转子系统动力学的研究。San Andres认为箔片的非线性结构刚度是引起亚同步涡动的原因,在他的模型中气膜刚度假设为无穷大。事实上,超高速下气膜刚度是一个有界值[20]。为此,文中将抛弃气膜刚度无穷大的假设,通过引入等效刚度和等效阻尼系数,来综合考虑气膜刚度和箔片结构刚度对转子动力学瞬态冲击响应的影响。归纳箔片参数对轴心轨迹的影响规律,为箔片结构刚度与气膜刚度的匹配提供参考。
1 箔片轴承-刚性转子动力学模型
1.1 转子动力学方程
气体动压轴承支承下的刚性转子可等效成图1所示的形式,转子长度为l,转子重心距两端支承点距离分别为l1和l2,转子左右两端轴承支承处的动态位移依次为x1,y1,x2,y2.
从图8可以看出,当箔片的结构刚度为非线性,且偏硬时,5.0 s后计算收敛。稳态时,a端轴颈的最大振幅约为1.25 μm,b端轴颈的最大振幅约为2 μm.与软箔片相比较,采用硬箔片时,计算收敛时间变长,但是振幅减小。1.7 s时脉冲力引起最大位移为130 μm,冲击结束后,经过0.070 s后再次进入稳态。
综上,稳态时,采用1#箔片(软箔片)的转子振幅最大(约为10 μm),采用2#箔片(硬箔片)的转子振幅其次(约为2 μm),采用3#箔片(恒定结构刚度箔片)的转子振幅最小(约为1 μm)。箔片越硬,等效刚度越大,因此转子振幅会减小,但是箔片结构刚度的非线性也是造成振幅过大的因素。
3种箔片支承的转子系统在相同脉冲力下的响应结果对比如图9所示:3种情形下的转子最大振幅大致相等;采用恒定结构刚度箔片与采用硬箔片的转子响应时间大致相当(约为0.07 s),而采用软箔片的转子响应时间最短(约0.023 s)。如图4所示,1#箔片的结构刚度大部分要比3#箔片的小,但这会使它获得比3#箔片大一些的等效阻尼,使得瞬态响应时间缩短。箔片越硬,等效阻尼会越小,所以转子振荡时间会加长,但是箔片结构刚度的非线性会使得瞬态响应时间缩短。
综上分析,当采用恒定刚度箔片时,转子稳态振幅最小,但是瞬态响应时间较长;当采用非线性软箔片时,转子稳态振幅最大,但是瞬态响应时间最短。当增大非线性箔片的结构刚度时,转子稳态振幅会减小,瞬态响应时间会增加。因此,箔片的设计需要辅以轴承-转子动力学特性的考量,以获得箔片结构刚度和结构阻尼的合理匹配。
4 结 论
1)当轴颈无涡动,气膜压力为常数时,等效刚度是气膜刚度和箔片结构刚度的串联,等效阻尼要小于箔片结构阻尼;当轴颈有涡动时,等效刚度和等效阻尼与涡动频率相关,且当涡动频率趋于无穷大时,等效刚度和等效阻尼趋于无涡动时的值。
2)稳态时,采用1#箔片(软箔片)的转子振幅最大(约为10 μm),采用2#箔片(硬箔片)的转子振幅其次(约为2 μm),采用3#箔片(恒定结构刚度箔片)的转子振幅最小(约为1 μm)。箔片越硬,等效刚度越大,因此转子振幅会减小,但是箔片结构刚度的非线性也是造成振幅过大的因素。
3)相同脉冲力下,采用恒定结构刚度箔片与采用硬箔片的转子响应时间大致相当(约为0.07 s),而采用软箔片的转子响应时间最短(约0.023 s)。箔片越硬,等效阻尼会越小,转子振荡时间会加长,但是箔片结构刚度的非线性会使得瞬态响应时间缩短。
参考文献(References):
[1] Mark G.Cost and performance enhancements for a PEM fuel cell turbocompressor[R].Philadelphia:Honeywell Systems,Systems & Services,2004.
[2]Ahluwalia R K,Wang X H.Fuel cell systems for transportation:status and trends[J].Journal of Power Sources,2008,177(1):167-176.
[3]Walton J F,Tomaszewski M J,Heshmat C A,et al.On the development of an oil-free electric turbocharger for fuel cells[C]//Proceedings of the ASME Turbo Expo 2006,Barcelona,Spain,2006(5):395-400.
[4]Hong D K,Woo B C,Lee J Y,et al.Ultra high speed motor supported by air foil bearings for air blower cooling fuel cells[J].IEEE Transactions on Magnetics,2012,48(2):871-874.
[5]Hong D K,Woo B C,Jeong Y H,et al.Development of an ultra high speed permanent magnet synchronous motor[J].International Journal of Precision Engineering and Manufacturing,2013,14(3):493-499.
[6]Heshmat H.Advancements in the performance of aerodynamic foil journal bearing:High-speed and load capability[J].Journal of Tribology,Transactions of the ASME,1994,116(2):287-295. [7]Kim T H,Lee J W,Kim C H,et al.Rotordynamic performance of an oil-free turbocharger supported on gas foil bearings:effects of an assembly radial clearance[C]//ASME Turbo Expo 2010:Power for Land,Sea,and Air.Glasgow,United kingdom,2010:GT2010-23243.
[8]San Andres L,Kim T H.Forced nonlinear response of gas foil bearing supported rotors[J].Tribology International,2008,41(8):704-715.
[9]Sim K H,Koo B J,Lee J S.Effects of mechanical preloads on the rotordynamic performance of a rotor supported on three-pad gas foil journal bearings[C]//Proceedings of ASME Turbo Expo,D sseldorf,Germany,2014:GT2014-25849.
[10]San Andres L,Rubio D,Kim T H.Rotordynamic performance of a rotor supported on bump type foil gas bearings:experiments and predictions[J].Journal of Engineering for Gas Turbines and Power,2007,129(3):850-857.
[11]Kim T H,San Andres L.Effect of side end pressurization on the dynamic performance of gas foil bearings:a model anchored to test data[J].Transactions of the ASME,Journal of Engineering for Gas Turbines and Power,2009,131:012501.
[12]Kim T H,San Andres L.Effects of a mechanical preload on the dynamic force response of gas foil bearings-measurements and model predictions[J].STLE Tribology Transactions,2009,52:569-580.
[13]Sim K H,Koo B J.Effects of mechanical preloads on the rotordynamic performance of a rotor supported on three-pad gas foil journal bearings[J].Journal of Engineering for Gas Turbines and Power,2014,136:122503-1-8.
[14]Heshmat H.Operation of foil bearing beyond the bending critical mode[J].Journal of Tribology,Transactions of the ASME,2000,122(1):192-198.
[15]San Andres L.Identification of rotordynamic force coefficients of a metal mesh foil bearing using impact load excitations[J].Journal of Engineering for Gas Turbines and Power,2011,133:112501-1-9.
[16]San Andres L.A metal mesh foil bearing and a bump-type foil bearing:comparison of performance for two similar size gas bearings[J].Journal of Engineering for Gas Turbines and Power,2012,134:102501-1-13.
[17]Moore J J,Lerche A,Allison T.Development of a high speed gas bearing test rig to measure rotordynamic force coefficients[J].Journal of Engineering for Gas Turbines and Power,2011,133:102504-1-9.
[18]Feng K,Zhao X,Huo C,et al.Analysis of novel hybrid bump-metal mesh foil bearings[J].Tribology International,2016,103:529-539.
[19]Zhang G,Chen Q,Yan J,et al.Theoretical analysis and numerical simulation of oil lubricated foil bearing with elastic supported bump foil structure[C]//Proceedings of the ASME Turbo Expo,Seoul,South Korea,2016:GT2016-56267.
[20]戚社苗.弹性箔片气体轴承的完全气弹耦合解[D].西安:西安交通大学,2005.
QI She-miao.A generalized solution of elasto-aerodynamically coupled lubrication for compliant foil bearings[D].Xi’an:Xi’an Jiaotong University,2005.
[21]戚社苗,耿海鵬,虞 烈.动压气体轴承的动态刚度和动态阻尼系数[J].机械工程学报,2007,43(5):91-98.
QI She-miao,GENG Hai-peng,YU Lie.Dynamic stiffness and dynamic damping coefficients of aerodynamic bearings[J].Chinese Journal of Mechanical Engineering,2007,43(5):91-98.
关键词:弹性箔片轴承;等效刚度;等效阻尼;瞬态冲击;稳态响应
中图分类号:TB 122 文献标志码:A
文章编号:1672-9315(2019)05-0912-07
Abstract:The rotor supported by gas foil bearings(GFBs)may collide with the bearings at a high speed.In order to reveal the mechanism of the impact on rotor vibration when the rotor is supported by GFBs with various structural stiffness,the paper takes a 2 GFBs-rigid rotor system models as examples,uses the Runge-Kutta method to solve the state equation of rotor dynamics,and obtains the journal displacements of the rotor supported by three different structural stiffness foils(uniform,soft,and hard foils).The equivalent stiffness and damping coefficient of foil bearing are derived.It was discovered that the equivalent stiffness of the GFB is the series connection of the gas film stiffness and the foil structural stiffness for the static journal.The equivalent stiffness and damping of the GFB are functions of structural stiffness,structural damping and vortex frequency,and approach to the values of the static journal when the vortex frequency becomes infinity.The results show that the steady amplitude of rotor is the smallest,but the transient response time is longer when the constant stiffness foil is used;for the nonlinear soft foil,the steady amplitude of the rotor is maximum,but the transient response time is minimum;when the structural stiffness of the nonlinear foil is increased,the steady amplitude of rotor decreases and the transient response time increases.Therefore,the design of foil needs to be supplemented by the consideration of the dynamic characteristics of the bearing-rotor in order to obtain a reasonable match of the structural stiffness and damping of the foil.
Key words:Gas Foil Bearings(GFBs);equivalent stiffness;equivalent damping;transient shock;steady state response
0 引 言
近年來,弹性箔片轴承支承的高速永磁同步电机驱动的离心压缩机已经成为各国竞相研究的热点[1-5],但在应用中通往超高速时始终面临着以下关键问题:系统的动力不稳定。由于气体轴承的低阻尼特性,气体轴承转子系统中的不稳定现象往往比油润滑轴承转子系统更为明显。同时,尽管弹性箔片轴承与刚性表面轴承相比具有更为优秀的抗涡动性能,但是仍然无法避免因旋转效应而产生的自激振荡。在弹性箔片轴承中除了有限的气膜阻尼之外,唯一能为高速转子提供稳定性保障的只剩下库仑摩擦阻尼[6]。大量实验数据显示,当转子在超高速下运行时,转子的轴心轨迹频谱中会含有亚同步涡动分量,不同学者在不同的试验台上测得的亚同步涡动频率大致在100~400 Hz之间[7-9]。目前对该现象的解释有较多分歧,有学者认为是由轴承内的气膜涡动所引起,有的则认为是不平衡量造成,还有的归结为轴承非线性结构刚度原因[10],但有一点是相同的,即该亚同步涡动频率与箔片轴承-转子系统的刚体自然频率接近。Kim和San Andres对转子动力性能测试表明:在轴承端部供应压缩空气会延迟转子亚同步涡动出现的转速,增强转子动力稳定性[11]。Kim和San Andres在文献[12]中的研究表明:在拱箔下面安装金属膜片是最经济的增加预紧方式,它增加了气膜内的压力场,测试表明加膜片的弹性箔片轴承使得大幅值亚同步涡动发生时的转子转速延后了。按照Sim的理解,大幅值亚同步涡动是由大的不平衡量造成,箔片预紧只是一种很好的抑制或者推迟亚同步涡动出现的补救措施[13]。虽然,人们对亚同步涡动出现的原因尚未达成统一意见,但为了提高轴承的抗涡动能力,即稳定性,增加轴承的阻尼确是毋庸置疑的选择。Heshmat曾经尝试过采用喷涂2.5 μm厚铜涂层的拱箔来改善轴承的阻尼(库伦阻尼)特性,但是效果不明显[14]。为了增加GFBs的阻尼,San Andres 引入了金属网,替代了原来的拱箔,这种金属网结构具有很大的机械能耗散能力(材料阻尼大),且气膜动态阻尼几乎不随转速变化,但是轴承的刚度会有所降低[15-16]。为了避免金属网箔片轴承低刚度特性,可以将吸振材料移到轴承套的外表面,充填在轴承套外表面的槽内[17]。此外,还有其他一些提高阻尼的结构,比如拱箔-金属网混合型[18]、油润滑型GFB[19]。 以上增強阻尼的措施对解决工程问题是非常适用的,但为探究亚同步涡动现象的机理,则需进行轴承转子系统动力学的研究。San Andres认为箔片的非线性结构刚度是引起亚同步涡动的原因,在他的模型中气膜刚度假设为无穷大。事实上,超高速下气膜刚度是一个有界值[20]。为此,文中将抛弃气膜刚度无穷大的假设,通过引入等效刚度和等效阻尼系数,来综合考虑气膜刚度和箔片结构刚度对转子动力学瞬态冲击响应的影响。归纳箔片参数对轴心轨迹的影响规律,为箔片结构刚度与气膜刚度的匹配提供参考。
1 箔片轴承-刚性转子动力学模型
1.1 转子动力学方程
气体动压轴承支承下的刚性转子可等效成图1所示的形式,转子长度为l,转子重心距两端支承点距离分别为l1和l2,转子左右两端轴承支承处的动态位移依次为x1,y1,x2,y2.
从图8可以看出,当箔片的结构刚度为非线性,且偏硬时,5.0 s后计算收敛。稳态时,a端轴颈的最大振幅约为1.25 μm,b端轴颈的最大振幅约为2 μm.与软箔片相比较,采用硬箔片时,计算收敛时间变长,但是振幅减小。1.7 s时脉冲力引起最大位移为130 μm,冲击结束后,经过0.070 s后再次进入稳态。
综上,稳态时,采用1#箔片(软箔片)的转子振幅最大(约为10 μm),采用2#箔片(硬箔片)的转子振幅其次(约为2 μm),采用3#箔片(恒定结构刚度箔片)的转子振幅最小(约为1 μm)。箔片越硬,等效刚度越大,因此转子振幅会减小,但是箔片结构刚度的非线性也是造成振幅过大的因素。
3种箔片支承的转子系统在相同脉冲力下的响应结果对比如图9所示:3种情形下的转子最大振幅大致相等;采用恒定结构刚度箔片与采用硬箔片的转子响应时间大致相当(约为0.07 s),而采用软箔片的转子响应时间最短(约0.023 s)。如图4所示,1#箔片的结构刚度大部分要比3#箔片的小,但这会使它获得比3#箔片大一些的等效阻尼,使得瞬态响应时间缩短。箔片越硬,等效阻尼会越小,所以转子振荡时间会加长,但是箔片结构刚度的非线性会使得瞬态响应时间缩短。
综上分析,当采用恒定刚度箔片时,转子稳态振幅最小,但是瞬态响应时间较长;当采用非线性软箔片时,转子稳态振幅最大,但是瞬态响应时间最短。当增大非线性箔片的结构刚度时,转子稳态振幅会减小,瞬态响应时间会增加。因此,箔片的设计需要辅以轴承-转子动力学特性的考量,以获得箔片结构刚度和结构阻尼的合理匹配。
4 结 论
1)当轴颈无涡动,气膜压力为常数时,等效刚度是气膜刚度和箔片结构刚度的串联,等效阻尼要小于箔片结构阻尼;当轴颈有涡动时,等效刚度和等效阻尼与涡动频率相关,且当涡动频率趋于无穷大时,等效刚度和等效阻尼趋于无涡动时的值。
2)稳态时,采用1#箔片(软箔片)的转子振幅最大(约为10 μm),采用2#箔片(硬箔片)的转子振幅其次(约为2 μm),采用3#箔片(恒定结构刚度箔片)的转子振幅最小(约为1 μm)。箔片越硬,等效刚度越大,因此转子振幅会减小,但是箔片结构刚度的非线性也是造成振幅过大的因素。
3)相同脉冲力下,采用恒定结构刚度箔片与采用硬箔片的转子响应时间大致相当(约为0.07 s),而采用软箔片的转子响应时间最短(约0.023 s)。箔片越硬,等效阻尼会越小,转子振荡时间会加长,但是箔片结构刚度的非线性会使得瞬态响应时间缩短。
参考文献(References):
[1] Mark G.Cost and performance enhancements for a PEM fuel cell turbocompressor[R].Philadelphia:Honeywell Systems,Systems & Services,2004.
[2]Ahluwalia R K,Wang X H.Fuel cell systems for transportation:status and trends[J].Journal of Power Sources,2008,177(1):167-176.
[3]Walton J F,Tomaszewski M J,Heshmat C A,et al.On the development of an oil-free electric turbocharger for fuel cells[C]//Proceedings of the ASME Turbo Expo 2006,Barcelona,Spain,2006(5):395-400.
[4]Hong D K,Woo B C,Lee J Y,et al.Ultra high speed motor supported by air foil bearings for air blower cooling fuel cells[J].IEEE Transactions on Magnetics,2012,48(2):871-874.
[5]Hong D K,Woo B C,Jeong Y H,et al.Development of an ultra high speed permanent magnet synchronous motor[J].International Journal of Precision Engineering and Manufacturing,2013,14(3):493-499.
[6]Heshmat H.Advancements in the performance of aerodynamic foil journal bearing:High-speed and load capability[J].Journal of Tribology,Transactions of the ASME,1994,116(2):287-295. [7]Kim T H,Lee J W,Kim C H,et al.Rotordynamic performance of an oil-free turbocharger supported on gas foil bearings:effects of an assembly radial clearance[C]//ASME Turbo Expo 2010:Power for Land,Sea,and Air.Glasgow,United kingdom,2010:GT2010-23243.
[8]San Andres L,Kim T H.Forced nonlinear response of gas foil bearing supported rotors[J].Tribology International,2008,41(8):704-715.
[9]Sim K H,Koo B J,Lee J S.Effects of mechanical preloads on the rotordynamic performance of a rotor supported on three-pad gas foil journal bearings[C]//Proceedings of ASME Turbo Expo,D sseldorf,Germany,2014:GT2014-25849.
[10]San Andres L,Rubio D,Kim T H.Rotordynamic performance of a rotor supported on bump type foil gas bearings:experiments and predictions[J].Journal of Engineering for Gas Turbines and Power,2007,129(3):850-857.
[11]Kim T H,San Andres L.Effect of side end pressurization on the dynamic performance of gas foil bearings:a model anchored to test data[J].Transactions of the ASME,Journal of Engineering for Gas Turbines and Power,2009,131:012501.
[12]Kim T H,San Andres L.Effects of a mechanical preload on the dynamic force response of gas foil bearings-measurements and model predictions[J].STLE Tribology Transactions,2009,52:569-580.
[13]Sim K H,Koo B J.Effects of mechanical preloads on the rotordynamic performance of a rotor supported on three-pad gas foil journal bearings[J].Journal of Engineering for Gas Turbines and Power,2014,136:122503-1-8.
[14]Heshmat H.Operation of foil bearing beyond the bending critical mode[J].Journal of Tribology,Transactions of the ASME,2000,122(1):192-198.
[15]San Andres L.Identification of rotordynamic force coefficients of a metal mesh foil bearing using impact load excitations[J].Journal of Engineering for Gas Turbines and Power,2011,133:112501-1-9.
[16]San Andres L.A metal mesh foil bearing and a bump-type foil bearing:comparison of performance for two similar size gas bearings[J].Journal of Engineering for Gas Turbines and Power,2012,134:102501-1-13.
[17]Moore J J,Lerche A,Allison T.Development of a high speed gas bearing test rig to measure rotordynamic force coefficients[J].Journal of Engineering for Gas Turbines and Power,2011,133:102504-1-9.
[18]Feng K,Zhao X,Huo C,et al.Analysis of novel hybrid bump-metal mesh foil bearings[J].Tribology International,2016,103:529-539.
[19]Zhang G,Chen Q,Yan J,et al.Theoretical analysis and numerical simulation of oil lubricated foil bearing with elastic supported bump foil structure[C]//Proceedings of the ASME Turbo Expo,Seoul,South Korea,2016:GT2016-56267.
[20]戚社苗.弹性箔片气体轴承的完全气弹耦合解[D].西安:西安交通大学,2005.
QI She-miao.A generalized solution of elasto-aerodynamically coupled lubrication for compliant foil bearings[D].Xi’an:Xi’an Jiaotong University,2005.
[21]戚社苗,耿海鵬,虞 烈.动压气体轴承的动态刚度和动态阻尼系数[J].机械工程学报,2007,43(5):91-98.
QI She-miao,GENG Hai-peng,YU Lie.Dynamic stiffness and dynamic damping coefficients of aerodynamic bearings[J].Chinese Journal of Mechanical Engineering,2007,43(5):91-98.