论文部分内容阅读
由于Hadoop能在同一时间处理多个用户提交的不同作业的多个任务,这使得用传统的方法对其进行建模和性能分析变得十分困难。为了解决这个问题,基于马尔可夫排队模型M/MMDP/C/K建立了一个随机Petri网(SPN)模型和一个确定随机Petri网(DSPN)模型来分别描述Hadoop调度中的数据状态和作业公平调度。通过设置DSPN中的使动谓词和随机开关来建模Hadoop公平调度和YARN公平调度。使用嵌入的马尔可夫链模型来分析单用户情景,而在分析多用户情景时则引入分解和迭代技术来减小模型的状态空间,从而避免