论文部分内容阅读
互信息作为图像配准中的相关度矩阵有着广泛的应用,通常采用的是基于Shannon熵的互信息。采用一个广义的信息熵——Renyi熵,提出了一种基于广义互信息的图像配准方法。在全局搜索阶段,采用q取较小值的Renyi熵,此时,Renyi熵可以消除局部极值,再通过局部优化方法对当前的局部最优解进行局部寻优,以找到全局最优解;在局部优化阶段,使用基于q→1时的Renyi熵的归一化互信息测度作为目标函数。实验结果表明:相对于归一化互信息图像配准算法,基于Renyi熵的互信息配准算法有良好的配准效果,且提高了配准速度。