论文部分内容阅读
若随机变量列X_(1n)(ω),X_(2n)(ω),…,X_(kn)(ω)分别依概率(或几乎处处)收敛于常数c_1,c_2,…,c_k,而f(x_1,x_2,…,x_k)是k维欧几里得空间R ̄k中在点(c_1,C_2,…c_k)连续的波勒尔可测函数,则随机变量f(x_(1m)(ω),…,X_(kn)(ω)也依概率(相应地,几乎处处)收敛到常数f(c_1,c_2,…,c_k)。这是概率论中斯鲁茨基定理的拓广。