论文部分内容阅读
The group solubility parameter (GSP) model was used to analyze the liquid-liquid equilibrium (LLE) of ternary and quaternary systems. The GSP parameters are divided into four dimensions representing the four major intermolecular forces. The values of the parameters were determined by regression using the nonlinear SIMPLEX optimization method to fit the LLE data of 548 ternary and 26 quaternary systems selected from the literature. LLE predictions of 8 ternary systems were then made using the fit parameters. Comparison of the results with predictions using the modified UNIFAC model shows that the GSP model has less adjustable parameters to achieve a similar accuracy and that the parameter values are easily acquired by analysis of available data.
The group of solubility parameters (GSP) model was used to analyze the liquid-liquid equilibrium (LLE) of ternary and quaternary systems. The GSP parameters are divided into four dimensions representing the four major intermolecular forces. The values of the parameters were determined by regression using the nonlinear SIMPLEX optimization method to fit the LLE data of 548 ternary and 26 quaternary systems selected from the literature. LLE predictions of 8 ternary systems were then made using the fit parameters. Comparison of the results with predictions using the modified UNIFAC model shows that the GSP model has less adjustable parameters to achieve a similar accuracy and that the parameter values are readily acquired by analysis of available data.