论文部分内容阅读
假设恢复者所获得免疫力并不是永久的而是在一段时间后会减弱并丧失,建立了一类具有非单调发生率的传染病动力学方程。利用微分方程的基本理论和数值仿真的方法,将对此模型进行动力学性质的分析,得到无病平衡点稳定性和一致持久性的条件。对于该问题有效的措施,即研究使疾病以非单调发生率传染的情形,建立相应的 SEIRS 传染病模型,得到其无病平衡点的全局稳定性的与之条件以及系统一致持久的充分条件,并进行系统的数值仿真分析。