论文部分内容阅读
基因表达数据的一个重要应用是给组织样本进行分类。在基因表达数据中,基因的数量相对于数据样本的个数通常比较多;也就是说,可以得到变量数(基因数)远远大于样本数的数据矩阵。过高的维数(变量或基因数)将给分类问题带来极大的挑战。本文提出结合一种新的特征提取方法——非相关线性判别式分析方法(ULDA)和支持向量机(SVM)分类算法,对结肠癌组织样本进行分类识别。并同其它方法作了比较研究,结果表明了该方法的可行性和有效性。