论文部分内容阅读
针对传统脑肿瘤人工分割方法稳定性与精确度不够高的问题,提出了一种ACM选择系统结合改进Chan-Vese模型的自适应图像分割方法。提出的框架适用于3种不同的局部区域主动轮廓模型(LRACM):LGDF、改进C-V以及LBF,根据要处理特定图像集,提出的方法可以自适应地选择其中最佳的一种模型来表示图像。首先,在学习阶段,其中一部分数据用于在最佳LRACM的选择任务中训练系统,并为此计算了平均值、调和平均值等10个图像特征;然后,在评估阶段,其余数据被测试以评估所提出的系统正确选择期望的主动轮廓模型的能